Preparation, characterization of new Co(II) and Cu(II) phthalocyanines and their catalytic performances in aerobic oxidation of substituted phenols

  • Ece Tugba Saka
Original Article


Substituted phenol pollutants are produced as by products of many industrial processes. Aerobic oxidations for their degradation in the context of effluent treatment or environmental remediation often lack selectivity. In this work Co(II) and Cu(II) phthalocyanines-catalyzed approach is described that converts substituted phenols into less harmfull products. New cobalt(II) and copper(II) phthalocyanine complexes are used as catalyst for degradation of substituted phenols with different oxidants. The oxidation process exhibits remarkable selectivity and conversion owing to the fact that Co(II) and Cu(II) phthalocyanines work with high performance.


Phthalocyanine Cobalt Copper Substituted phenols Aerobic oxidation 



This study was supported by the Research Fund of Karadeniz Technical University, (Project No: 5302), Trabzon-Turkey.

Supplementary material

10847_2018_800_MOESM1_ESM.doc (40 kb)
Supplementary material 1 (DOC 39 KB)


  1. 1.
    Juretica, D., Kusica, H., Dionysioub, D.D., Loncaric Bozica, A.: Environmental aspects of photooxidative treatment of phenolic compounds. J. Hazard. Mater. 262, 377–386 (2013)CrossRefGoogle Scholar
  2. 2.
    Rappoport, Z.: The Chemistry of Phenols. Part 2. Wiley, West Sussex (2003)CrossRefGoogle Scholar
  3. 3.
    Pera-Titus, M., Garcia-Molina, V., Banos, M.A., Gimenez, J., Esplugas, S.: Degradation of chlorophenols by means of advanced oxidation processes: a generalreview. Appl. Catal. B 47, 219–256 (2004)CrossRefGoogle Scholar
  4. 4.
    EPA, July 2002,
  5. 5.
    EC Decision 2455/2001/EC of the European Parliament and of the Council of November 20, 2001 establishing the list of priority substances in the field ofwater policy and amending Directive 2000/60/EC.(L 331 of 15-12-2001)Google Scholar
  6. 6.
    World Health Organization, Guidelines for Drinking Water Quality. Vol.II: Health Criteria and Supporting Information, World Health Organization, Geneva, Switzerland, (1984)Google Scholar
  7. 7.
    Shannon, R.D., Boardman, G.D., Dietrich, A.M., Bevan, D.R.: Mitochondrial response to chlorophenols as a short-term toxicity assay. Environ. Toxicol. Chem. 10, 57–66 (1991)CrossRefGoogle Scholar
  8. 8.
    Bıyıklıoglu, Z., Saka, E.T., Gökce, S., Kantekin, H.: Synthsis, characterization andinvestigation of homogeneous oxidation activities of peripherallytetra-substituted Co(II) and Fe(II) phthalocyanines: oxidation of cyclohexene. J. Mol. Catal. A 378, 156–163 (2013)CrossRefGoogle Scholar
  9. 9.
    Han, Z., Hana, X., Zhao, X., Yua, J., Xu, H.: Iron phthalocyanine supported on amidoximated PAN fiber aseffective catalyst for controllable hydrogen peroxide activation inoxidizing organic dyes. J. Hazard. Mater. 320, 27–35 (2016)CrossRefGoogle Scholar
  10. 10.
    Pirkanniemi, K., Sillanpaa, M., Sorokin, A.: Degradative hydrogen peroxide oxidation of chelates catalysed by metallophthalocyanines. Sci. Total Environ. 307, 11–18 (2003)CrossRefGoogle Scholar
  11. 11.
    Shen, C.S., Wen, Y.Z., Kang, X.D., Liu, W.P.: H2O2-induced surface modification: a facile, effective and environmentally friendly pretreatment of chitosan for dyes removal. Chem. Eng. J. 166, 474–482 (2011)CrossRefGoogle Scholar
  12. 12.
    Shena, C., Wena, Y., Shenb, Z., Wuc, J., Liua, W.: Facile, green encapsulation of cobalt tetrasulfophthalocyanine monomers in mesoporous silicas for the degradative hydrogen peroxide oxidation of azo dyes. J. Hazard. Mater. 193, 209–215 (2011)CrossRefGoogle Scholar
  13. 13.
    Sorokin, A.B.: µ-Nitrido diiron phthalocyanine and porphyrin complexes: unusual structures with interesting catalytic properties. Adv. Inorg. Chem. 70, 107–165 (2017)CrossRefGoogle Scholar
  14. 14.
    Özer, M., Yılmaz, F., Erer, H., Kani, İ, Bekaroğlu, Ö: Synthesis, characterization and catalytic activity of novel Co(II) and Pd(II)-perfluoroalkylphthalocyanine in fluorous biphasic system; benzyl alcohol oxidation. Appl. Organomet. Chem. 23, 55–61 (2009)CrossRefGoogle Scholar
  15. 15.
    Makinde, Z.O., Louzada, M., Mashazi, P., Nyokong, T., Khene, S.: Electrocatalytic behaviour of surface confined pentanethio cobalt(II) binuclear phthalocyanines towards the oxidation of 4-chlorophenol. Appl. Surf. Sci. 425, 702–712 (2017)CrossRefGoogle Scholar
  16. 16.
    Saka, E.T., Caglar, Y.: New Co(II) and Cu(II) phthalocyanine catalysts reinforced by long alkyl chains for the degradation of organic pollutants. Catal. Lett. 147, 1471–1477 (2017)CrossRefGoogle Scholar
  17. 17.
    Sorokin, A.B.: Phthalocyanine metal complexes in catalysis. Chem. Rev. 113, 8152–8192 (2013)CrossRefGoogle Scholar
  18. 18.
    L’Hera, M., Göktug, Ö, Durmuş, M., Ahsen, V.: A water soluble zinc phthalocyanine: physicochemical, electrochemical studies and electropolymerization. Electrochim. Acta 213, 655–662 (2016)CrossRefGoogle Scholar
  19. 19.
    Bıyıklıoğlu, Z., Durmuş, M., Kantekin, H.: Tetra-2-[2-(dimethylamino)ethoxy]ethoxy substituted zinc phthalocyanines and their quaternized analoques: Synthesis, characterization, photophysical and photochemical properties. J. Photochem. Photobiol. A 222, 87–96 (2011)CrossRefGoogle Scholar
  20. 20.
    Bıyıklıoğlu, Z., Çakır, V., Çakır, D., Kantekin, H.: Crown ether-substituted water soluble phthalocyanines and their aggregation, electrochemical studies. J. Organomet. Chem. 749, 18–25 (2014)CrossRefGoogle Scholar
  21. 21.
    Bıyıklıoğlu, Z., Kantekin, H., Acar, I.: The synthesis and characterization of new organosoluble long chain-substituted metal-free and metallophthalocyanines by microwave irradiation. Inorg. Chem. Commun. 11, 1448–1451 (2008)CrossRefGoogle Scholar
  22. 22.
    Acar, İ, Kantekin, H., Bıyıklıoğlu, Z.: The synthesis, using microwave irradiation and characterization of novel, metal-free and metallophthalocyanines. J. Organomet. Chem. 695, 151–155 (2010)CrossRefGoogle Scholar
  23. 23.
    Bıyıklıoğlu, Z., Güner, E.T., Topçu, S., Kantekin, H.: Synthesis, characterization and electrochemistry of a new organosoluble metal-free and metallophthalocyanines. Polyhedron 27, 1707–1713 (2008)CrossRefGoogle Scholar
  24. 24.
    Gök, H.Z., Kantekin, H., Gök, Y., Herman, G.: The synthesis and characterization of novel metal-free and metallophthalocyanines bearing four 27-membered dioxadiazapentathia macrocycles. Dyes Pigm. 74, 699–705 (2007)CrossRefGoogle Scholar
  25. 25.
    Sorokin, A.B.: Phthalocyanine metal complexes in catalysis. Chem. Rev. 113, 8152 – 8191 (2013)CrossRefGoogle Scholar
  26. 26.
    Isci, Ü, Dumoulin, F., Sorokin, A.B., Ahsen, V.: N-bridged dimers of tetrapyrroles complexed by transition metals: syntheses, characterization methods, and uses as oxidation catalysts. Turk. J. Chem. 38, 923–949 (2014)CrossRefGoogle Scholar
  27. 27.
    Cimen, Y., Türk, H.: Oxidation of 2,3,6-trimethylphenol with potassium peroxymonosulfate catalyzed by iron and cobalt phthalocyanine tetrasulfonates in a methanol-water mixture. Appl. Catal. A 340, 52–58 (2008)CrossRefGoogle Scholar
  28. 28.
    Günay, T., Cimen, Y.: Degradation of 2,4,6-trichlorophenol with peroxymonosulfate catalyzed by soluble and supported iron porphyrins. Environ. Pollut. 231, 1013–1020 (2017)CrossRefGoogle Scholar
  29. 29.
    Kamıloglu, A.A., Acar, I., Bıyıklıoglu, Z., Saka, E.T.: Peripherally tetra-{2-(2,3,5,6-tetrafluorophenoxy)ethoxy} substituted cobalt(II), iron(II) metallophthalocyanines: synthesis and their electrochemical, catalytic activity studies. J. Organomet. Chem. 828, 59–67 (2017)CrossRefGoogle Scholar
  30. 30.
    Cakir, V., Cakir, D., Göksel, M., Durmus, M., Bıyıklıoglu, Z., Kantekin, H.: Synthesis, photochemical, bovine serum albumin and DNA binding properties of tetrasubstituted zinc phthalocyanines and their water soluble derivatives. J. Photochem. Photobiol. A 299, 138–151 (2015)CrossRefGoogle Scholar
  31. 31.
    Demirbas, U., Akcay, H.T., Koca, A., Kantekin, H.: Synthesis, characterization and investigation of electrochemical and spectroelectrochemical properties of peripherally tetra 4-phenylthiazole-2-thiol substituted metal-free, zinc(II), copper(II) and cobalt(II) phthalocyanines. J. Mol. Struct. 1141, 643–649 (2017)CrossRefGoogle Scholar
  32. 32.
    Dube, E., Nwaji, N., Oluwole, D.O., Mack, J., Nyokong, T.: Investigation of photophysicochemical properties of zinc phthalocyanines conjugated to metallic nanoparticles. J. Photochem. Photobiol. A 349, 148–161 (2017)CrossRefGoogle Scholar
  33. 33.
    Acar, I., Bayrak, R., Saka, E.T., Bıyıklıoglu, Z., Kantekin, H.: Novel metal-free, metallophthalocyanines and their quaternized derivatives: synthesis, spectroscopic characterization and catalytic activity of cobalt phthalocyanine in 4-nitrophenol oxidation. Polyhedron 50, 345–353 (2013)CrossRefGoogle Scholar
  34. 34.
    Saka, E.T., Bıyıklıoğlu, Z., Kantekin, H., Kani, İ: Synthesis, characterization and catalytic activity of peripherally tetra-substituted Co(II) phthalocyanines for cyclohexene oxidation. Appl. Organomet. Chem. 27, 59–67 (2013)CrossRefGoogle Scholar
  35. 35.
    Kopkallı, Y.T., Türk, H.: Catalysis of autoxidation of 2,6-di-tert-butylphenol in water by metallophthalocyanine tetrasulfonates bound to polyelectrolyte supports. Turk. J. Chem. 20, 54–61 (1996)Google Scholar
  36. 36.
    Colomba, C., Kudrik, E.V., Afanasiev, P., Sorokin, A.B., Catalysis Today, 235, 14 (2014)Google Scholar
  37. 37.
    Kothari, V.M., Tazuma, J.J.: Selective autoxidation of some phenols using salcomines and metal phthalocyanines. J. Catal. 41, 180–189 (1976)CrossRefGoogle Scholar
  38. 38.
    Meunier, B., Sorokin, A.B.: Oxidation of pollutants catalyzed by metallophthalocyanines. Acc. Chem. Res. 30, 470–476 (1997)CrossRefGoogle Scholar
  39. 39.
    Hadasch, A., Sorokin, A.B., Rabion, A., Meunier, B.: Sequential addition of H2O2, pH and solvent effects as key factors in the oxidation of 2,4,6-trichlorophenol catalyzed by iron tetrasulfophthalocyanine. New J. Chem. 22, 45–51 (1998)CrossRefGoogle Scholar
  40. 40.
    Sanchez, M., Chap, N., Cazaux, J., Meunier, B.: Metallophthalocyanines linked to organic copolymers as efficient oxidative supported catalysts. Eur. J. Inorg. Chem. 7, 1775–1783 (2001)CrossRefGoogle Scholar
  41. 41.
    Agboola, B., Ozoemena, K.I., Nyokong, T.: Hydrogen peroxide oxidation of 2-chlorophenol and 2,4,5-trichlorophenol catalyzed by monomeric and aggregated cobalt tetrasulfophthalocyanine. J. Mol. Catal. A 227, 209–216 (2005)CrossRefGoogle Scholar
  42. 42.
    Ichinohe, T., Miyasaka, H., Isoda, A., Kimura, M., Hanabusa, K., Shirai, H.: Functional metallomacrocycles and their polymers, Part 37. Oxidative decomposition of 2,4,6-trichlorophenol by polymer-bound phthalocyanines. React. Funct. Polym. 43, 63–70 (2000)CrossRefGoogle Scholar
  43. 43.
    Pergrale, C., Sorokin, A.B.: CR Acad Sci Ser IIc: Chim 2000 pp:803–810Google Scholar
  44. 44.
    Saka, E.T., Sarkı, G., Kantekin, H.: Facile synthesis of highly active Co(II) and Fe(II) phthalocyanine catalysts for aerobic oxidation of phenolic compounds. J. Coord. Chem. 68, 1132–1141 (2015)CrossRefGoogle Scholar
  45. 45.
    Di Paola, A., Augugliaro, V., Palmisano, L., Pantaleo, G., Savinov, E.: Heterogeneous photocatalytic degradation of nitrophenols. J. Photochem. Photobiol. A 155, 207–214 (2003)CrossRefGoogle Scholar
  46. 46.
    Türk, H., Cimen, Y.: Oxidation of 2,6-di-tert-butylphenol with tert-butylhydroperoxide catalyzed by cobalt(II) phthalocyanine tetrasulfonate in a methanol–water mixture and formation of an unusual product 4,4′-dihydroxy-3,3′,5,5′-tetra-tert-butylbiphenyl. J. Mol. Catal. A 234, 19–24 (2005)CrossRefGoogle Scholar
  47. 47.
    Kharasch, M.S., Joshi, B.S.: Base-catalyzed oxidations of hindered phenols. J. Org. Chem. 22, 1439 (1957)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of SciencesKaradeniz Technical UniversityTrabzonTurkey

Personalised recommendations