Advertisement

Characterization of the inclusion complex of the essential oil of Lantana camara L. and β-cyclodextrin by vibrational spectroscopy, GC–MS, and X-ray diffraction

  • Márcio dos S. Rocha
  • Sidney G. de Lima
  • Bartolomeu C. Viana
  • José Galberto Martins Costa
  • Francisco E. P. Santos
Original Article
  • 165 Downloads

Abstract

The genus Lantana is widely used in folk medicine because its essential oil has antibacterial, antifungal and repellent activity. However, its thermal instability and low solubility in water reduce its technological application. In this work, an inclusion complex was prepared consisting of the essential oil of Latana camara L. (LCEO) and β-cyclodextrin (β-CD). The complex was characterizated by vibrational spectroscopy (Raman and FTIR spectroscopy), differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The optimization of the ratio of the LCEO and β-CD in the inclusion complex was determined by gas chromatography coupled to mass spectrometry (GC–MS); it was inferred that the ratio of guest–host = 6:94 (m:m) was the optimal ratio. Shifts in some peak positions of the vibrations modes in Raman spectra of L. camara and β-CD provided clearer and better evidence of inclusion complex formation than infrared spectroscopy did. Results of DSC and XRD characterization of inclusion complex are in good agreement with Raman results.

Graphical Abstract

Formation of the inclusion complex between β-CD and LCEO as well as its characterization by different analytical techniques such as infrared spectroscopy and Raman spectroscopy, DSC, XRD and GC–MS.

Keywords

Lantana camara Essential oil β-Cyclodextrin Inclusion complex Raman spectroscopy 

Notes

Acknowledgements

The authors would like to acknowledge the UFPI and CNPq for financial support and FISMAT and LAPETRO for the analyzes.

References

  1. 1.
    Patel, S.: A weed with multiple utility: Lantana camara. Rev. Environ. Sci. Biotechnol. 10, 341–351 (2011).  https://doi.org/10.1007/s11157-011-9254-7 CrossRefGoogle Scholar
  2. 2.
    Bouda, H., Tapondjou, L.A., Fontem, D.A., Gumedzoe, M.Y.D.: Effect of essential oils from leaves of Ageratum conyzoides, Lantana camara and Chromolaena odorata on the mortality of Sitophilus zeamais (Coleoptera, Curculionidae). J. Stored Prod. Res. 37, 103–109 (2001).  https://doi.org/10.1016/S0022-474X(00)00011-4 CrossRefGoogle Scholar
  3. 3.
    Silva, R.A.D.: Pharmacopeia Brasileira. Companhia Editora Nacional, Rio de Janeiro (1929)Google Scholar
  4. 4.
    Brandão, M.G.L., Zanetti, N.N.S., Oliveira, G.R.R., Goulart, L.O., Monte-Mor, R.L.M.: Other medicinal plants and botanical products from the first edition of the Brazilian Official Pharmacopoeia. Rev. Bras. Farmacogn. 18, 127–134 (2008).  https://doi.org/10.1590/S0102-695X2008000100022 CrossRefGoogle Scholar
  5. 5.
    Alitonou, G., Avlessi, F., Bokossa, I., Ahoussi, E., Dangou, J., Sohounhloué, D.C.K.: Composition chimique et activités biologiques de l’huile essentielle de Lantana camara Linn. Comptes Rendus Chim. 7, 1101–1105 (2004).  https://doi.org/10.1016/j.crci.2003.11.017 CrossRefGoogle Scholar
  6. 6.
    Deena, M.J., Thoppil, J.E.: Antimicrobial activity of the essential oil of Lantana camara. Fitoterapia 71, 453–455 (2000).  https://doi.org/10.1016/S0367-326X(00)00140-4 CrossRefGoogle Scholar
  7. 7.
    Sousa, E.O., Silva, N.F., Rodrigues, F.F.G., Campos, A.R., Lima, S.G., Costa, J.G.M.: Chemical composition and resistance-modifying effect of the essential oil of Lantana camara Linn. Pharmacogn. Mag. 6, 79–82 (2010).  https://doi.org/10.4103/0973-1296.62890 CrossRefGoogle Scholar
  8. 8.
    Benites, J., Moiteiro, C., Miguel, G., Rojo, L., López, J., Venâncio, F., Ramalho, L., Feio, S., Dandlen, S., Casanova, H., Torres, I.: Composition and biological activity of the essential oil of peruvian Lantana camara. J. Chil. Chem. Soc. 54, 379–384 (2009).  https://doi.org/10.4067/S0717-97072009000400012 CrossRefGoogle Scholar
  9. 9.
    Costa, J.G.M., Sousa, E.O., Rodrigues, F.F.G., De Lima, S.G., Braz-Filho, R.: Composição química e avaliação das atividades antibacteriana e de toxicidade dos óleos essenciais de Lantana camara L. e Lantana sp. Braz. J. Pharmacogn. 19, 710–714 (2009).  https://doi.org/10.1590/S0102-695X2009000500010 CrossRefGoogle Scholar
  10. 10.
    Costa, J.G.M., Rodrigues, F.F.G., Sousa, E.O., Junior, D.M.S., Campos, A.R., Coutinho, H.D.M., De Lima, S.G.: Composition and larvicidal activity of the essential oils of lantana camara and lantana montevidensis. Chem. Nat. Compd. 46, 313–315 (2010).  https://doi.org/10.1007/s10600-010-9601-x CrossRefGoogle Scholar
  11. 11.
    Heise, H.M., Kuckuk, R., Bereck, A., Riegel, D.: Infrared spectroscopy and Raman spectroscopy of cyclodextrin derivatives and their ferrocene inclusion complexes. Vib. Spectrosc. 53, 19–23 (2010).  https://doi.org/10.1016/j.vibspec.2010.01.012 CrossRefGoogle Scholar
  12. 12.
    Zoubiri, S., Baaliouamer, A.: GC and GC/MS analyses of the Algerian Lantana camara leaf essential oil: effect against Sitophilus granarius adults. J. Saudi Chem. Soc. 16, 291–297 (2012).  https://doi.org/10.1016/j.jscs.2011.01.013 CrossRefGoogle Scholar
  13. 13.
    Zoubiri, S., Baaliouamer, A.: Larvicidal activity of two Algerian Verbenaceae essential oils against Culex pipiens. Vet. Parasitol. 181, 370–373 (2011).  https://doi.org/10.1016/j.vetpar.2011.04.033 CrossRefGoogle Scholar
  14. 14.
    Kubo, A., Lunde, C.S., Kubo, I.: Antimicrobial activity of the olive oil flavor compounds. J. Agric. Food Chem. 43, 1629–1633 (1995).  https://doi.org/10.1021/jf00054a040 CrossRefGoogle Scholar
  15. 15.
    Lu, J.J., Dang, Y.Y., Huang, M., Xu, W.S., Chen, X.P., Wang, Y.T.: Anti-cancer properties of terpenoids isolated from Rhizoma Curcumae: a review. J. Ethnopharmacol. 143, 406–411 (2012).  https://doi.org/10.1016/j.jep.2012.07.009 CrossRefGoogle Scholar
  16. 16.
    Ghelardini, C., Galeotti, N., Di Cesare Mannelli, L., Mazzanti, G., Bartolini, A.: Local anaesthetic activity of β-caryophyllene. Farmaco 56, 387–389 (2001).  https://doi.org/10.1016/S0014-827X(01)01092-8 CrossRefGoogle Scholar
  17. 17.
    Aguiara, U.N., De Lima, S.G., Rocha, M.S., De Freitas, R.M., Oliveira, T.M., Silva, R.M., Moura, L.C.B., De Almeidab, L.T.G.: Preparação e caracterização do complexo de inclusão do óleo essencial de croton zehntneri com b-ciclodextrina. Quim. Nova. 37, 50–55 (2014).  https://doi.org/10.1590/S0100-40422014000100010 CrossRefGoogle Scholar
  18. 18.
    Lyra, M.A.M., Alves, L.D.S., Fontes, D.A.F., Soares-Sobrinho, J.L., Rolim-Neto, P.J.: Ferramentas analíticas aplicadas à caracterizaçã o de complexos de inclusão fármaco-ciclodextrina. Rev. Ciencias Farm. Basica Apl. 31, 117–124 (2010)Google Scholar
  19. 19.
    Salústio, P.J., Feio, G., Figueirinhas, J.L., Pinto, J.F., Cabral Marques, H.M.: The influence of the preparation methods on the inclusion of model drugs in a β-cyclodextrin cavity. Eur. J. Pharm. Biopharm. 71, 377–386 (2009).  https://doi.org/10.1016/j.ejpb.2008.09.027 CrossRefGoogle Scholar
  20. 20.
    Wang, J., Cao, Y., Sun, B., Wang, C.: Physicochemical and release characterisation of garlic oil-β-cyclodextrin inclusion complexes. Food Chem. 127, 1680–1685 (2011).  https://doi.org/10.1016/j.foodchem.2011.02.036 CrossRefGoogle Scholar
  21. 21.
    Abbehausen, C., Formiga, A.L.B., Sabadini, E., Yoshida, I.V.P.: A-βcyclodextrin/siloxane hybrid polymer: synthesis, characterization and inclusion complexes. J. Braz. Chem. Soc. 21, 1867–1876 (2010).  https://doi.org/10.1590/S0103-50532010001000011 CrossRefGoogle Scholar
  22. 22.
    Britto, M.A.F.O., Nascimento, C.S., Dos Santos, H.F.: Análise estrutural de ciclodextrinas: Um estudo comparativo entre métodos teóricos clássicos e quânticos. Quim. Nova. 27, 882–888 (2004).  https://doi.org/10.1590/S0100-40422004000600008 CrossRefGoogle Scholar
  23. 23.
    Fernandes, L.P., Oliveira, W.P., Sztatisz, J., Szilágyi, I.M., Novák, C.: Solid state studies on molecular inclusions of Lippia sidoides essential oil obtained by spray drying. J. Therm. Anal. Calorim. 95, 855–863 (2009).  https://doi.org/10.1007/s10973-008-9149-1 CrossRefGoogle Scholar
  24. 24.
    Waleczek, K.J., Cabral Marques, H.M., Hempel, B., Schmidt, P.C.: Phase solubility studies of pure (−)-α-bisabolol and camomile essential oil with β-cyclodextrin. Eur. J. Pharm. Biopharm. 55, 247–251 (2003).  https://doi.org/10.1016/S0939-6411(02)00166-2 CrossRefGoogle Scholar
  25. 25.
    Wang, Y., Jiang, Z.-T., Li, R.: Complexation and molecular microcapsules of Litsea cubeba essential oil with β-cyclodextrin and its derivatives. Eur. Food Res. Technol. 228, 865–873 (2009).  https://doi.org/10.1007/s00217-008-0999-3 CrossRefGoogle Scholar
  26. 26.
    Zhan, H., Jiang, Z.-T., Wang, Y., Li, R., Dong, T.-S.: Molecular microcapsules and inclusion interactions of eugenol with β-cyclodextrin and its derivatives. Eur. Food Res. Technol. 227, 1507–1513 (2008).  https://doi.org/10.1007/s00217-008-0873-3 CrossRefGoogle Scholar
  27. 27.
    Jiang, S., Li, J.-N., Jiang, Z.-T.: Inclusion reactions of β-cyclodextrin and its derivatives with cinnamaldehyde in Cinnamomum loureirii essential oil. Eur. Food Res. Technol. 230, 543–550 (2010).  https://doi.org/10.1007/s00217-009-1192-z CrossRefGoogle Scholar
  28. 28.
    Rosa, R.-D.L., Cevallos-Ferriz, R.A., Silva-Pineda, S.R.S.A.: Paleobiological implications of Campanian coprolites. Palaeogeogr. Palaeoclimatol. Palaeoecol. 142, 231–254 (1998).  https://doi.org/10.1016/S0031-0182(98)00052-2 CrossRefGoogle Scholar
  29. 29.
    Reineccius, T.A., Reineccius, G.A., Peppard, T.L.: The effect of solvent interactions on α-, β-, and γ-cyclodextrin/flavor molecular inclusion complexes. J. Agric. Food Chem. 53, 388–392 (2005).  https://doi.org/10.1021/jf0488716 CrossRefGoogle Scholar
  30. 30.
    de Oliveira, V.E., Almeida, E.W.C., Castro, H.V., Edwards, H.G.M., Dos Santos, H.F., de Oliveira, L.F.C.: Carotenoids and β-cyclodextrin inclusion complexes: Raman spectroscopy and theoretical investigation. J. Phys. Chem. A 115, 8511–8519 (2011).  https://doi.org/10.1021/jp2028142 CrossRefGoogle Scholar
  31. 31.
    de Lima, S.G., Neto, J.M.M., Lopes Citó, A.M.G., da Costa, J.G.M., Reis, F.A.M.: Monoterpenes, sesquiterpenes and fatty acids from julocroton triqueter (Euphorbiaceae) from Ceara-Brazil. J. Chil. Chem. Soc. 54, 55–57 (2009).  https://doi.org/10.4067/S0717-97072009000100013 CrossRefGoogle Scholar
  32. 32.
    Van Den Dool, H., Dec. Kratz, P.: A generalization of the retention index system including linear temperature programmed gas–liquid partition chromatography. J. Chromatogr. A 11, 463–471 (1963).  https://doi.org/10.1016/S0021-9673(01)80947-X CrossRefGoogle Scholar
  33. 33.
    Adams, R.P.: Identification of essential oil components by gas chromatography/massspectrometry. Allured Pub. Corp, Carol Stream (2007)Google Scholar
  34. 34.
    Medeiros, L.B.P., Rocha, MdosS., de Lima, S.G., de Sousa Júnior, G.R., Lopes Citó, A.M.G., da Silva, D., Lopes, J.A.D., Moura, D.J., Saffi, J., Mobin, M., da Costa, J.G.M.: Chemical constituents and evaluation of cytotoxic and antifungal activity of Lantana camara essential oils. Rev. Bras. Farmacogn. 22, 1259–1267 (2012).  https://doi.org/10.1590/S0102-695X2012005000098 CrossRefGoogle Scholar
  35. 35.
    Bhandari, B.R., Arcy, B.R.D., Le, L., Bich, T.: Lemon oil to β-cyclodextrin ratio effect on the inclusion efficiency of β-cyclodextrin and the retention of oil volatiles in the complex. Analysis 8561, 1494–1499 (1998).  https://doi.org/10.1021/jf970605n Google Scholar
  36. 36.
    Harangi, J., Nánási, P.: Measurement of the essential oil in inclusion complexes with cyclodextrin by means of capillary gas chromatography. Anal. Chim. Acta. 156, 103–109 (1984).  https://doi.org/10.1016/S0003-2670(00)85541-5 CrossRefGoogle Scholar
  37. 37.
    Sonibare, O., Effiong, I.: African journal of biotechnology. Academic Journals (2002)Google Scholar
  38. 38.
    Hernández, T., Canales, M., Avila, J.G., García, A.M., Martínez, A., Caballero, J., De Vivar, R., Lira, A.R.: Composition and antibacterial activity of essential oil of Lantana achyranthifolia Desf. (Verbenaceae). J. Ethnopharmacol. 96, 551–554 (2005).  https://doi.org/10.1016/j.jep.2004.09.044 CrossRefGoogle Scholar
  39. 39.
    Randrianalijaona, J.A., Ramanoelina, P.A.R., Rasoarahona, J.R.E., Gaydou, E.M.: Seasonal and chemotype influences on the chemical composition of Lantana camara L.: essential oils from Madagascar. Anal. Chim. Acta. 545, 46–52 (2005).  https://doi.org/10.1016/j.aca.2005.04.028 CrossRefGoogle Scholar
  40. 40.
    Baranska, M., Schulz, H., Walter, A., Rösch, P., Quilitzsch, R., Lösing, G., Popp, J.: Investigation of eucalyptus essential oil by using vibrational spectroscopy methods. Vib. Spectrosc. 42, 341–345 (2006).  https://doi.org/10.1016/j.vibspec.2006.08.004 CrossRefGoogle Scholar
  41. 41.
    Misra, L., Laatsch, H.: Triterpenoids, essential oil and photo-oxidative 28→13-lactonization of oleanolic acid from Lantana camara. Phytochemistry 54, 969–974 (2000)CrossRefGoogle Scholar
  42. 42.
    Ngassoum, M.B., Yonkeu, S., Jirovetz, L., Buchbauer, G., Schmaus, G., Hammerschmidt, F.J.: Chemical composition of essential oils of Lantana camara leaves and flowers from Cameroon and Madagascar. Flavour Fragr. J. 14, 245–250 (1999)CrossRefGoogle Scholar
  43. 43.
    Veiga, F., Pecorelli, C., Ribeiro, L.: As ciclodextrinas em tecnologia farmacêutica. MinervaCoimbra, Coimbra (2006)Google Scholar
  44. 44.
    Hǎdǎrugǎ, N.G., Hǎdǎrugǎ, D.I., Pǎunescu, V., Tatu, C., Ordodi, V.L., Bandur, G., Lupea, A.X.: Thermal stability of the linoleic acid/α- and β-cyclodextrin complexes. Food Chem. 99, 500–508 (2006).  https://doi.org/10.1016/j.foodchem.2005.08.012 CrossRefGoogle Scholar
  45. 45.
    Schulz, H., Baranska, M.: Identification and quantification of valuable plant substances by IR and Raman spectroscopy. Vib. Spectrosc. 43, 13–25 (2007).  https://doi.org/10.1016/j.vibspec.2006.06.001 CrossRefGoogle Scholar
  46. 46.
    Schulz, H., Quilitzsch, R., Krüger, H.: Rapid evaluation and quantitative analysis of thyme, origano and chamomile essential oils by ATR-IR and NIR spectroscopy. J. Mol. Struct. 661–662, 299–306 (2003).  https://doi.org/10.1016/S0022-2860(03)00517-9 CrossRefGoogle Scholar
  47. 47.
    Li, W., Lu, B., Chen, F., Yang, F., Wang, Z.: Host–guest complex of cypermethrin with β-cyclodextrin: a spectroscopy and theoretical investigation. J. Mol. Struct. 990, 244–252 (2011).  https://doi.org/10.1016/j.molstruc.2011.01.053 CrossRefGoogle Scholar
  48. 48.
    Li, W., Lu, B., Sheng, A., Yang, F., Wang, Z.: Spectroscopic and theoretical study on inclusion complexation of beta-cyclodextrin with permethrin. J. Mol. Struct. 981, 194–203 (2010).  https://doi.org/10.1016/j.molstruc.2010.08.008 CrossRefGoogle Scholar
  49. 49.
    Egyed, O.: Spectroscopic studies on β-cyclodextrin. Anal. Chim. Acta. 240, 225–227 (1990).  https://doi.org/10.1016/0924-2031(90)80041-2 CrossRefGoogle Scholar
  50. 50.
    Schulz, H., Özkan, G., Baranska, M., Krüger, H., Özcan, M.: Characterisation of essential oil plants from Turkey by IR and Raman spectroscopy. Vib. Spectrosc. 39, 249–256 (2005).  https://doi.org/10.1016/j.vibspec.2005.04.009 CrossRefGoogle Scholar
  51. 51.
    Larkin, P.: Infrared and Raman spectroscopy: principles and spectral interpretation. Elsevier, Amsterdam (2011)Google Scholar
  52. 52.
    Stancanelli, R., Ficarra, R., Cannavà, C., Guardo, M., Calabrò, M.L., Ficarra, P., Ottanà, R., Maccari, R., Crupi, V., Majolino, D., Venuti, V.: UV-VIS and FTIR-ATR characterization of 9-fluorenon-2-carboxyester/(2-hydroxypropyl)-β-cyclodextrin inclusion complex. J. Pharm. Biomed. Anal. 47, 704–709 (2008).  https://doi.org/10.1016/j.jpba.2008.02.018 CrossRefGoogle Scholar
  53. 53.
    Iliescu, T., Baia, M., Miclăuş, V.: A Raman spectroscopic study of the diclofenac sodium–β-cyclodextrin interaction. Eur. J. Pharm. Sci. 22, 487–495 (2004).  https://doi.org/10.1016/j.ejps.2004.05.003 CrossRefGoogle Scholar
  54. 54.
    Seidler-Lozykowska, K., Baranska, M., Baranski, R., Krol, D.: Raman analysis of caraway (Carum carvi L.) single fruits. Evaluation of essential oil content and its composition. J. Agric. Food Chem. 58, 5271–5275 (2010).  https://doi.org/10.1021/jf100298z CrossRefGoogle Scholar
  55. 55.
    Siatis, N.G., Kimbaris, A.C., Pappas, C.S., Tarantilis, P.A., Daferera, D.J., Polissiou, M.G.: Rapid method for simultaneous quantitative determination of four major essential oil components from Oregano (Oreganum sp.) and Thyme (Thymus sp.) using FT-Raman spectroscopy. J. Agric. Food Chem. 53, 202–206 (2005).  https://doi.org/10.1021/jf048930f CrossRefGoogle Scholar
  56. 56.
    Daferera, D.J., Tarantilis, P.A., Polissiou, M.G.: Characterization of essential oils from lamiaceae species by fourier transform Raman spectroscopy. J. Agric. Food Chem. 50, 5503–5507 (2002)CrossRefGoogle Scholar
  57. 57.
    Daferera, D., Pappas, C., Tarantilis, P.A., Polissiou, M.: Quantitative analysis of α-pinene and β-myrcene in mastic gum oil using FT-Raman spectroscopy. Food Chem. 77, 511–515 (2002).  https://doi.org/10.1016/S0308-8146(01)00382-X CrossRefGoogle Scholar
  58. 58.
    Fini, A., Ospitali, F., Zoppetti, G., Puppini, N.: ATR/Raman and fractal characterization of HPBCD/progesterone complex solid particles. Pharm. Res. 25, 2030–2040 (2008).  https://doi.org/10.1007/s11095-008-9593-4 CrossRefGoogle Scholar
  59. 59.
    Lamcharfi, E., Kunesch, G., Meyer, C., Robert, B.: Using FT-IR and Raman spectroscopy. Spectroscopy 51, 1861–1870 (1995)Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Márcio dos S. Rocha
    • 1
  • Sidney G. de Lima
    • 1
  • Bartolomeu C. Viana
    • 2
  • José Galberto Martins Costa
    • 3
  • Francisco E. P. Santos
    • 2
  1. 1.Programa de Pós-Graduação em QuímicaUniversidade Federal do Piauí (UFPI)TeresinaBrazil
  2. 2.Programa de Pós-Graduação Ciência e Engenharia de MateriaisUniversidade Federal do Piauí (UFPI)TeresinaBrazil
  3. 3.Graduate Program in Molecular Bioprospection, Laboratory of Natural Products ResearchURCACratoBrazil

Personalised recommendations