Skip to main content
Log in

Interaction of native cyclodextrins and their hydroxypropylated derivatives with parabens in aqueous solutions. Part 1: evaluation of inclusion complexes

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Due to their antimicrobial activity, parabens (i.e. alkyl esters of p-hydroxybenzoic acid) are widely used as preservatives in several industries (pharmaceutical, food, cosmetic). Although being extremely effective, their usage is hampered by their low aqueous solubility. Several formulation strategies can be applied to enhance their solubility, one of which is formation of water-soluble cyclodextrin (CD) complexes. Formation of inclusion complexes has been proved to be a good approach to increase solubility of lipophilic drugs and other active ingredients. Some research has been done in this field. However, a complete and comprehensive study on how the alkyl chain length of parabens influences the complex formation, aggregation and formation of insoluble complexes is still lacking. Phase-solubility studies showed that all the very water-soluble hydroxypropylated CDs form linear (AL) type phase-solubility profiles with all tested parabens. The poorly soluble βCD did also form AL-type profiles with methyl and ethyl paraben while the βCD complexes of propyl and butyl paraben have limited solubility in water and, thus displayed B-type profiles. The paraben complexes of αCD and γCD all had limited solubility in water and, thus, displayed B-type phase-solubility profiles. Fourier-transformed infrared spectroscopy, Differential scanning calorimetry and X-ray powder diffraction were applied to elucidate the nature of the solid phases from the phase-solubility studies. They consistently showed the presence of solid pure paraben over the CD concentration range studied when AL-type profiles were observed, and precipitation of poorly soluble paraben/CD complexes when B-type were observed (i.e. during and after the B-type plateau region). These studies demonstrate that the composition of solid phases is related to the type of phase-solubility profile. It was also shown that in aqueous CD solutions, paraben solubilization increase with increasing side chain length (i.e. methyl < ethyl < propyl < butyl), as well as, with increasing size of the CD cavity (i.e. αCD < βCD < γCD). This statement is valid for linear region of phase-solubility diagrams (i.e. A- and B-type).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Giordano, F., Bettini, R., Donini, C., Gazzaniga, A., Caira, M.R., Zhang, G.G.Z., Grant, D.J.W.: Physical properties of parabens and their mixtures: solubility in water, thermal behavior, and crystal structures. J. Pharm. Sci. 88(11), 1210–1216 (1999). https://doi.org/10.1021/js9900452

    Article  CAS  PubMed  Google Scholar 

  2. Ma, M., Lee, T., Kwong, E.: Interaction of methylparaben preservative with selected sugars and sugar alcohols. J. Pharm. Sci. 91(7), 1715–1723 (2002). https://doi.org/10.1002/jps.10167

    Article  CAS  PubMed  Google Scholar 

  3. Jude Jenita, M., Thulasidhasan, J., Rajendiran, N.: Encapsulation of alkylparabens with natural and modified α- and β-cyclodextrins. J. Incl. Phenom. Macrocycl. Chem. 79(3), 365–381 (2014). https://doi.org/10.1007/s10847-013-0360-8

    Article  CAS  Google Scholar 

  4. Stappaerts, J., Do Thi, T., Dominguez-Vega, E., Somsen, G.W., Van den Mooter, G., Augustijns, P.: The impact of guest compounds on cyclodextrin aggregation behavior: a series of structurally related parabens. Int. J. Pharm. 529(1), 442–450 (2017). https://doi.org/10.1016/j.ijpharm.2017.07.026

    Article  CAS  PubMed  Google Scholar 

  5. Saokham, P., Do, T.T., Van den Mooter, G., Loftsson, T.: Inclusion complexes of p-hydroxybenzoic acid esters and γ-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 90(1), 111–122 (2017). https://doi.org/10.1007/s10847-017-0776-7

    Article  CAS  Google Scholar 

  6. Brewster, M.E., Loftsson, T.: Cyclodextrins as pharmaceutical solubilizers. Adv. Drug Deliv. Rev. 59(7), 645–666 (2007). https://doi.org/10.1016/j.addr.2007.05.012

    Article  CAS  PubMed  Google Scholar 

  7. Crini, G.: Review: a history of cyclodextrins. Chem. Rev. 114(21), 10940–10975 (2014). https://doi.org/10.1021/cr500081p

    Article  CAS  PubMed  Google Scholar 

  8. Loftsson, T., Duchene, D.: Cyclodextrins and their pharmaceutical applications. Int. J. Pharm. 329(1–2), 1–11 (2007). https://doi.org/10.1016/j.ijpharm.2006.10.044

    Article  CAS  PubMed  Google Scholar 

  9. Loftsson, T., Masson, M., Brewster, M.E.: Self-association of cyclodextrins and cyclodextrin complexes. J. Pharm. Sci. 93(5), 1091–1099 (2004). https://doi.org/10.1002/jps.20047

    Article  CAS  PubMed  Google Scholar 

  10. Sá Couto, A.R., Salústio, P., Cabral-Marques, H.: Cyclodextrins. In: Kishan Gopal Ramawat, J.-M.M. (ed.) Polysaccharides, Bioactivity and Biotechnology, vol. 1. pp. 247–288. Springer International Publishing, Berlin (2015)

    Google Scholar 

  11. Schonbeck, C., Madsen, T.L., Peters, G.H., Holm, R., Loftsson, T.: Soluble 1:1 complexes and insoluble 3:2 complexes—understanding the phase-solubility diagram of hydrocortisone and gamma-cyclodextrin. Int. J. Pharm. 531(2), 504–511 (2017). https://doi.org/10.1016/j.ijpharm.2017.05.024

    Article  CAS  PubMed  Google Scholar 

  12. Cohen, J., Lach, J.L.: Interaction of pharmaceuticals with Schardinger dextrins. I. Interaction with hydroxybenzoic acids and p-hydroxybenzoates. J. Pharm. Sci. 52, 132–136 (1963)

    Article  CAS  PubMed  Google Scholar 

  13. Caira, M.R., de Vries, E.J.C., Nassimbeni, L.R.: Cyclodextrin inclusion of p-hydroxybenzoic acid esters. J. Therm. Anal. Calorim. 73(2), 647–651 (2003). https://doi.org/10.1023/a:1025446617121

    Article  CAS  Google Scholar 

  14. Chan, L.W., Kurup, T.R.R., Muthaiah, A., Thenmozhiyal, J.C.: Interaction of p-hydroxybenzoic esters with beta-cyclodextrin. Int. J. Pharm. 195(1), 71–79 (2000). https://doi.org/10.1016/S0378-5173(99)00393-2

    Article  CAS  PubMed  Google Scholar 

  15. Lach, J.L., Cohen, J.: Interaction of pharmaceuticals with schardinger dextrins II: interaction with selected compounds. J. Pharm. Sci. 52(2), 137–142 (1963). https://doi.org/10.1002/jps.2600520207

    Article  CAS  PubMed  Google Scholar 

  16. de Vries, E.J.C., Caira, M.R., Bogdan, M., Farcas, S.I., Bogdan, D.: Inclusion of parabens in β-cyclodextrin: a solution NMR and X-ray structural investigation. Supramol. Sci. 21(5), 358–366 (2009). https://doi.org/10.1080/10610270801956202

    Article  CAS  Google Scholar 

  17. Holm, R., Olesen, N.E., Alexandersen, S.D., Dahlgaard, B.N., Westh, P., Mu, H.: Thermodynamic investigation of the interaction between cyclodextrins and preservatives—application and verification in a mathematical model to determine the needed preservative surplus in aqueous cyclodextrin formulations. Eur. J. Pharm. Sci. 87, 22–29 (2016). https://doi.org/10.1016/j.ejps.2015.09.011

    Article  CAS  PubMed  Google Scholar 

  18. Lehner, S.J., Müller, B.W., Seydel, J.K.: Interactions between p-hydroxybenzoic acid esters and hydroxypropyl-β-cyclodextrin and their antimicrobial effect against Candida albicans. Int. J. Pharm. 93(1), 201–208 (1993). https://doi.org/10.1016/0378-5173(93)90178-I

    Article  CAS  Google Scholar 

  19. Malaekeh-Nikouei, B., Bazzaz, F., Soheili, B.S., Mohammadian, V.: K.: Problems in ophthalmic drug delivery: evaluation of the interaction between preservatives and cyclodextrins. Jundishapur J. Microbiol. 6(5), e6333 (2013). https://doi.org/10.5812/jjm.6333

    Article  Google Scholar 

  20. Matsuda, H., Ito, K., Sato, Y., Yoshizawa, D., Tanaka, M., Taki, A., Sumiyoshi, H., Utsuki, T., Hirayama, F., Uekama, K.: Inclusion complexation of p-hydroxybenzoic acid esters with 2-hydroxypropyl-beta-cyclodextrins. On changes in solubility and antimicrobial activity. Chem. Pharm. Bull. 41(8), 1448–1452 (1993)

    Article  CAS  PubMed  Google Scholar 

  21. Loftsson, T., Stefánsdóttir, Ó, Friôriksdóttir, H., Guômundsson, Ö: Interactions between preservatives and 2-hydroxypropyl-β-cyclodextrin. Drug Dev. Ind. Pharm. 18(13), 1477–1484 (1992). https://doi.org/10.3109/03639049209040853

    Article  CAS  Google Scholar 

  22. Tanaka, M., Iwata, Y., Kouzuki, Y., Taniguchi, K., Matsuda, H., Arima, H., Tsuchiya, S.: Effect of 2-hydroxypropyl-β-cyclodextrin on percutaneous absorption of methyl paraben. J. Pharm. Pharmacol. 47(11), 897–900 (1995). https://doi.org/10.1111/j.2042-7158.1995.tb03267.x

    Article  CAS  PubMed  Google Scholar 

  23. Saokham, P., Sa Couto, A., Ryzhakov, A., Loftsson, T.: The self-assemble of natural cyclodextrins in aqueous solutions: application of miniature permeation studies for critical aggregation concentration (cac) determinations. Int. J. Pharm. 505(1–2), 187–193 (2016). https://doi.org/10.1016/j.ijpharm.2016.03.049

    Article  CAS  PubMed  Google Scholar 

  24. Higuchi, T., Connors, K.A.: Phase-solubility techniques. Adv. Anal. Chem. Instrum. 4, 117–212 (1965)

    CAS  Google Scholar 

  25. Loftsson, T., Hreinsdóttir, D., Másson, M.: Evaluation of cyclodextrin solubilization of drugs. Int. J. Pharm. 302(1), 18–28 (2005). https://doi.org/10.1016/j.ijpharm.2005.05.042

    Article  CAS  PubMed  Google Scholar 

  26. Coleman, A.W., Nicolis, I., Keller, N., Dalbiez, J.P.: Aggregation of cyclodextrins: an explanation of the abnormal solubility ofβ-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 13(2), 139–143 (1992). https://doi.org/10.1007/bf01053637

    Article  CAS  Google Scholar 

  27. Wu, A., Shen, X., He, Y.: Investigation on gamma-cyclodextrin nanotube induced by N,N′-diphenylbenzidine molecule. J. Colloid Interface Sci. 297(2), 525–533 (2006). https://doi.org/10.1016/j.jcis.2005.11.014

    Article  CAS  PubMed  Google Scholar 

  28. McDonald, C., Palmer, L., Boddy, M.: The solubilities of esters of 4-hydroxybenzoic acid, determined separately and together, in aqueous solutions of 2-hydroxypropyl-β-cyclodextrin. Drug Dev. Ind. Pharm. 22(9–10), 1025–1029 (1996). https://doi.org/10.3109/03639049609065936

    Article  Google Scholar 

  29. Narayanan, G., Boy, R., Gupta, B.S., Tonelli, A.E.: Analytical techniques for characterizing cyclodextrins and their inclusion complexes with large and small molecular weight guest molecules. Polym. Test. 62, 402–439 (2017). https://doi.org/10.1016/j.polymertesting.2017.07.023

    Article  CAS  Google Scholar 

  30. Dibbern, H.W.: UV- and IR spectra of some important drugs: classified in therapeutic groups including tables of characteristic UV absorption data and examples for the UV spectrocognostic identification of drugs. vol. 2. Editio Cantor, (1978)

  31. Muankaew, C., Jansook, P., Sigurđsson, H.H., Loftsson, T.: Cyclodextrin-based telmisartan ophthalmic suspension: formulation development for water-insoluble drugs. Int. J. Pharm. 507(1), 21–31 (2016). https://doi.org/10.1016/j.ijpharm.2016.04.071

    Article  CAS  PubMed  Google Scholar 

  32. Jansook, P., Ritthidej, G.C., Ueda, H., Stefansson, E., Loftsson, T.: yCD/HPyCD mixtures as solubilizer: solid-state characterization and sample dexamethasone eye drop suspension. J. Pharm. Pharm. Sci. 13(3), 336–350 (2010)

    Article  CAS  PubMed  Google Scholar 

  33. Cirri, M., Maestrelli, F., Furlanetto, S., Mura, P.: Solid-state characterization of glyburide-cyclodextrin co-ground products. J. Therm. Anal. Calorim. 77(2), 413–422 (2004). https://doi.org/10.1023/B:JTAN.0000038982.40315.8f

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support received from the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT) (Grant No. 135040) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorsteinn Loftsson.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Couto, A.R.S., Aguiar, S., Ryzhakov, A. et al. Interaction of native cyclodextrins and their hydroxypropylated derivatives with parabens in aqueous solutions. Part 1: evaluation of inclusion complexes. J Incl Phenom Macrocycl Chem 93, 309–321 (2019). https://doi.org/10.1007/s10847-018-00876-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-018-00876-5

Keywords

Navigation