Fabrication of intercalation hybrid of Ni–Al layered double hydroxide with Cu(II) phthalocyanine via exfoliation/restacking route and photocatalytic activity on elimination of Rhodamine 6G

  • Min Yang
  • Zhenye Zhang
  • Juanjuan Ma
  • Lin Liu
  • Mingyan Wang
  • Binbin Pan
  • Jinpeng Li
  • Jiasheng Xu
  • Zhiwei Tong
Original Article


An exfoliation/restacking synthesis route has been developed for the fabrication of Ni–Al layered double hydroxide (LDH) intercalated Cu(II) tetrasulfophthalocyanine (CuPcs) hybrid by using exfoliated LDH nanosheets and guest molecules as building blocks. The structural and morphological features of the resulting hybrid have been investigated by varieties of analytical techniques such as XRD, SEM, UV–Vis and thermal analysis. Interlayer spacings determined from XRD patterns reveal a perpendicular orientation of the CuPcs macrocycles to the Ni–Al LDH layer. Then the obtained nanohybrid was utilized as photocatalyst for the decolorization of Rhodamine 6G (Rh6G) aqueous solutions. The effects of H2O2, time, substrate concentration, catalyst dose, were studied as a function of percentage of decolorization under irradiation and the corresponding dark controls were also carried out for comparison. The decolorization percentage of Rh6G increases with irradiation time and can reach to 70% at 6 h as against to 18% in dark control.


Exfoliation/restacking route Layered double hydroxides Cu(II) phthalocyanine Photocatalytic decolorization Rhodamine 6G 



This work was supported by the National Natural Science Foundation of China (No. 21401062), Natural Science Fund of Jiangsu Province (BK20140447, BK20141247), Innovation Project of Graduate Student of Jiangsu Province (KYZZ15_0392) and HHIT Research Project (Z2015011). We are also grateful to “Jiangsu Overseas Research & Training Program for University Prominent Yong & Middle-aged Teachers and Presidents”.


  1. 1.
    Monash, P., Pugazhenthi, G.: Utilization of calcined Ni–Al layered double hydroxide (LDH) as an adsorbent for removal of methyl orange dye from aqueous solution. Environ. Prog. Sustain. Energy. 33(1), 154–159 (2014)CrossRefGoogle Scholar
  2. 2.
    Akceylan, E., Erdemir, S.: Carcinogenic direct azo dye removal from aqueous solution by amino-functionalized calix[4]arenes. J. Inclusion Phenom. Macrocyclic Chem. 82(3–4), 471–478 (2015)CrossRefGoogle Scholar
  3. 3.
    Parida, K.M., Baliarsingh, N., Patra, B.S., Das, J.: Copperphthalocyanine immobilized Zn/Al LDH as photocatalyst under solar radiation for decolorization of methylene blue. J. Mol. Catal. A: Chem. 267(1–2), 202–208 (2007)CrossRefGoogle Scholar
  4. 4.
    Mohamed, R.M., Mohamed, M.M.: Copper(II) phthalocyanines immobilized on alumina and encapsulated inside zeolite-X and their applications in photocatalytic degradation of cyanide: a comparative study. Appl. Catal. A: Gen. 340(1), 16–24 (2008)CrossRefGoogle Scholar
  5. 5.
    Iliev, V., Alexiev, V., Bilyarska, L.: Effect of metal phthalocyanine complex aggregation on the catalytic and photocatalytic oxidation of sulfur containing compounds. J. Mol. Catal. A: Chem. 137(1–3), 15–22 (1999)CrossRefGoogle Scholar
  6. 6.
    Iliev, V., Prahov, L., Bilyarska, L., Fischer, H., Schulz-Ekloff, G., Wohrle, D., Petrov, L.: Oxidation and photooxidation of sulfide and thiosulfate ions catalyzed by transition metal chalcogenides and phthalocyanine complexes. J. Mol. Catal. A: Chem. 151(1–2), 161–169 (2000)CrossRefGoogle Scholar
  7. 7.
    Wang, Z., Mao, W., Chen, H., Zhang, F., Fan, X., Qian, G.: Copper(II) phthalocyanine tetrasulfonate sensitized nanocrystalline titania photocatalyst: Synthesis in situ and photocatalysis under visible light. Catal. Commun. 7(8), 518–522 (2006)CrossRefGoogle Scholar
  8. 8.
    Li, Z., Li, Y., Qin, W., Wu, X.: Methylene blue photocatalytic degradation under visible irradiation of Al doped ZnO powders by hydrothermal synthesis sensitized with octa-iso-pentyloxyphthalocyanine lead. J. Mater. Sci: Mater. Electron. 27(7), 6673–6680 (2016)Google Scholar
  9. 9.
    Pakapongpan, S., Mensing, J.P., Phokharatkul, D., Lomas, T., Tuantranont, A.: Highly selective electrochemical sensor for ascorbic acid based on a novel hybrid graphene-copper phthalocyanine-polyaniline nanocomposites. Electrochim. Acta. 133(1), 294–301 (2014)CrossRefGoogle Scholar
  10. 10.
    Zhong, J.P., Fan, Y.J., Wang, H., Wang, R.X., Fan, L.L., Shen, X.C., Shi, Z.J.: Copper phthalocyanine functionalization of graphene nanosheets as support for platinum nanoparticles and their enhanced performance toward methanol oxidation. J. Power Sources. 242(15), 208–215 (2013)CrossRefGoogle Scholar
  11. 11.
    Zhang, Y.Q., Fan, Y.J., Cheng, L., Fan, L.L., Wang, Z.Y., Zhong, J.P., Wu, L.N., Shen, X.C., Shi, Z.J.: A novel glucose biosensor based on the immobilization of glucose oxidase on layer-by-layer assembly film of copper phthalocyanine functionalized graphene. Electrochim. Acta. 104(1), 178–184 (2013)CrossRefGoogle Scholar
  12. 12.
    Zhang, M., Shao, C., Guo, Z., Zhang, Z., Mu, J., Cao, T., Liu, Y.: Hierarchical nanostructures of copper(II) phthalocyanine on electrospun TiO2 nanofibers: controllable solvothermal-fabrication and enhanced visible photocatalytic properties. ACS Appl. Mater. Interfaces. 3(2), 369–377 (2011)CrossRefGoogle Scholar
  13. 13.
    Wang, Z., Chen, H., Tang, P., Mao, W., Zhang, F., Qian, G., Fan, X.: Hydrothermal in situ preparation of the copper phthalocyanine tetrasulfonate modified titanium dioxide photocatalyst. Colloids Surf. Physicochem. Eng. Aspects 289(1–3), 207–211 (2006)CrossRefGoogle Scholar
  14. 14.
    Vargas, E., Vargas, R., Nunez, O.: A TiO2 surface modified with copper(II) phthalocyanine-tetrasulfonic acid tetrasodium salt as a catalyst during photoinduced dichlorvos mineralization by visible solar light. Appl. Catal. B: Environ. 156–157, 8–14 (2014)CrossRefGoogle Scholar
  15. 15.
    Chidembo, A.T., Ozoemena, K.I., Agboola, B.O., Gupta, V., Wildgoose, G.G., Compton, R.G.: Nickel(II) tetra-aminophthalocyanine modified MWCNTs as potential nanocomposite materials for the development of supercapacitors. Energy Environ. Sci. 3(2), 228–236 (2010)CrossRefGoogle Scholar
  16. 16.
    Baba, A., Kanetsuna, Y., Sriwichai, S., Ohdaira, Y., Shinbo, K., Kato, K., Phanichphant, S., Kaneko, F.: Nanostructured carbon nanotubes/copper phthalocyanine hybrid multilayers prepared using layer-by-layer self-assembly approach. Thin Solid Films. 518(8), 2200–2205 (2010)CrossRefGoogle Scholar
  17. 17.
    Kanezaki, E.: Unexchangeable interlayer anions; synthesis and characterization of Zn/Al- and Mg/Al-Layered Double Hydroxides with Interlayer Alizarin red S. J. Inclusion Phenom. Macrocyclic Chem. 46(1), 89–95 (2003)CrossRefGoogle Scholar
  18. 18.
    Saber, O., Tagaya, H.: New layered double hydroxide, Zn-Ti LDH: preparation and intercalation reactions. J. Inclusion Phenom. Macrocyclic Chem. 45(1), 109–116 (2003)Google Scholar
  19. 19.
    Demel, J., Lang, K.: Layered hydroxide-porphyrin hybrid materials: synthesis, structure, and properties. Eur. J. Inorg. Chem. 2012(32), 5154–5164 (2012)CrossRefGoogle Scholar
  20. 20.
    Halma, M., de Freitas Castro, K.A.M., Taviotgueho, C., Prevot, V., Forano, C., Wypych, F., Nakagaki, S.: Synthesis, characterization, and catalytic activity of anionic Iron(III) porphyrins intercalated into layered double hydroxides. J. Catal. 257(2), 233–243 (2008)CrossRefGoogle Scholar
  21. 21.
    Kamil, L., BezdicKa, P.: Layered double hydroxides with intercalated porphyrins as photofunctional materials: subtle structural changes modify singlet oxygen production. Chem. Mater. 19(15), 3822–3829 (2007)CrossRefGoogle Scholar
  22. 22.
    Tong, Z.W., Shichi, T., Takagi, K.: Oxidation catalysis of a Manganese(III) porphyrin intercalated in layered double hydroxide clays. Mater. Lett. 57(15), 2258–2261 (2003)CrossRefGoogle Scholar
  23. 23.
    Káfuňková, E., Taviot-Guého, C., Bezdička, P., Klementová, M., Kovář, P., Kubát, P., Mosinger, J., Pospíšil, M., Lang, K.: Porphyrins intercalated in Zn/Al and Mg/Al layered double hydroxides: properties and structural arrangement. Chem. Mater. 22(8), 2481–2490 (2010)CrossRefGoogle Scholar
  24. 24.
    Bonnet, S., Forano, C., de Roy, A., Besse, J.P.: Synthesis of hybrid organo-mineral materials: anionic tetraphenylporphyrins in layered double hydroxides. Chem. Mater. 8(8), 1962–1968 (1996)CrossRefGoogle Scholar
  25. 25.
    Pan, B.B., Ma, J.J., Zhang, X.B., Liu, L., Zhang, D.E., Li, J.P., Yang, M., Zhang, Z.Y., Tong, Z.W.: Sandwich-structured nanocomposite constructed by fabrication of exfoliation α-ZrP nanosheets and cobalt porphyrin utilized for electrocatalytic oxygen reduction. Micropor. Mesopor. Mater. 223, 213–218 (2016)CrossRefGoogle Scholar
  26. 26.
    Liu, Z.P., Ma, R.Z., Osada, M., Iyi, N., Ebina, Y., Takada, K., Sasaki, T.: Synthesis, anion exchange, and delamination of Co–Al layered double hydroxide: assembly of the exfoliated nanosheet/polyanion composite films and magneto-optical studies. J. Am. Chem. Soc. 128(14), 4872–4880 (2006)CrossRefGoogle Scholar
  27. 27.
    Liu, Z.P., Ma, R.Z., Ebina, Y., Iyi, N., Takada, K., Sasaki, T.: General synthesis and delamination of highly crystalline transition-metal-bearing layered double hydroxides. Langmuir. 23(2), 861–867 (2007)CrossRefGoogle Scholar
  28. 28.
    Ma, J.J., Liu, L., Li, S.Z., Chen, Y.H., Zhuo, M., Shao, F., Gong, J.Y., Tong, Z.W.: Facile assembly for fast construction of intercalation hybrids of layered double hydroxides with anionic metalloporphyrin. Dalton Trans. 43(26), 9909–9915 (2014)CrossRefGoogle Scholar
  29. 29.
    Iyi, N., Matsumoto, T., Kaneko, Y., Kitamura, K.: Deintercalation of carbonate ions from a hydrotalcite-like compound: enhanced decarbonation using acid-salt mixed solution. Chem. Mater. 16(15), 2926–2932 (2004)CrossRefGoogle Scholar
  30. 30.
    Barrocas, B., Sério, S., Melo Jorge, M.E.: Hierarchically grown CaMn3O6 nanorods by RF magnetron sputtering for enhanced visible-light-driven photocatalysis. J. Phys. Chem. C. 118(41), 24127–24135 (2014)CrossRefGoogle Scholar
  31. 31.
    Khoza, P., Nyokong, T.: Visible light transformation of Rhodamine 6G using tetracarbazole zinc phthalocyanine when embedded in electrospun fibers and in the presence of ZnO and Ag particles. J. Coord. Chem. 68(7), 1117–1131 (2015)CrossRefGoogle Scholar
  32. 32.
    Aazam, E.S.: Photocatalytic oxidation of methylene blue dye under visible light by Ni doped Ag2S nanoparticles. J. Ind. Eng. Chem. 20(6), 4033–4038 (2014)CrossRefGoogle Scholar
  33. 33.
    Chen, D., Li, Y., Zhang, J., Zhou, J.Z., Guo, Y., Liu, H.: Magnetic Fe3O4/ZnCr-layered double hydroxide composite with enhanced adsorption and photocatalytic activity. Chem. Eng. J. 185–186, 120–126 (2012)CrossRefGoogle Scholar
  34. 34.
    Carrado, K.A., Forman, J.E., Botto, R.E., Winans, R.E.: Incorporation of phthalocyanines by cationic and anionic clays via ion exchange and direct synthesis. Chem. Mater. 5(4), 472–478 (1993)CrossRefGoogle Scholar
  35. 35.
    Bourzami, R., Eyele-Mezui, S., Delahaye, E., Drillon, M., Rabu, P., Parizel, N., Choua, S., Turek, P., Rogez, G.: New metal phthalocyanines/metal simple hydroxide multilayers: experimental evidence of dipolar field-driven magnetic behavior. Inorg. Chem. 53(2), 1184–1194 (2014)CrossRefGoogle Scholar
  36. 36.
    Ma, J.J., Zhang, Z.Y., Yang, M., Wu, Y.J., Feng, X.C., Liu, L., Zhang, X.B., Tong, Z.W.: Intercalated methylene blue between calcium niobate nanosheets by ESD technique for electrocatalytic oxidation of ascorbic acid. Micropor. Mesopor. Mater. 221, 123–127 (2016)CrossRefGoogle Scholar
  37. 37.
    Zhao, Y.L., Wang, J.M., Chen, H., Pan, T., Zhang, J.Q., Cao, C.N.: Different additives-substituted α-nickel hydroxide prepared by urea decomposition. Electrochim. Acta. 50(1), 91–98 (2004)CrossRefGoogle Scholar
  38. 38.
    Wang, J., You, J., Li, Z., Yang, P., Jing, X., Cao, D., Zhang, M.: Electrochemical performance of Ni/Al hydrotalcite supported on porous nickel electrode in hexacyanoferrate(III) media. Solid State Sci. 10(8), 1093–1098 (2008)CrossRefGoogle Scholar
  39. 39.
    Barbosa, C.A.S., Ferreira, A.M.D.C., Constantino, V.R.L.: Preparation and characterization of Cu(II) phthalocyanine tetrasulfonate intercalated and supported on layered double hydroxides. J. Inclusion Phenom. Macrocyclic Chem. 42(1), 15–23 (2002)CrossRefGoogle Scholar
  40. 40.
    Abellan, G., Busolo, F., Coronado, E., Marti-Gastaldo, C., Ribera, A.: Hybrid magnetic multilayers by intercalation of Cu(II) phthalocyanine in LDH hosts. J. Phys. Chem. C. 116(29), 15756–15764 (2012)CrossRefGoogle Scholar
  41. 41.
    Ghiladi, R.A., Kretzer, R.M., Guzei, I., Rheingold, A.L., Neuhold, Y.M., Hatwell, K.R., Zuberbühler, A.D., Karlin, K.D.: (F8TPP)FeII/O2 reactivity studies [F8TPP = Tetrakis(2,6-difluorophenyl)porphyrinate(2-)]: spectroscopic (UV–Visible and NMR) and kinetic study of solvent-dependent (Fe/O2 = 1:1 or 2:1) reversible O2-reduction and ferryl formation. Inorg. Chem. 40(23), 5754–5767 (2001)CrossRefGoogle Scholar
  42. 42.
    Chen, G., Qian, S., Tu, X., Wei, X., Zou, J., Leng, L., Luo, S.: Enhancement photocatalytic degradation of rhodamine B on nanoPt intercalated Zn-Ti layered double hydroxides. Appl. Surf. Sci. 293, 345–351 (2014)CrossRefGoogle Scholar
  43. 43.
    Khoza, P., Nyokong, T.: Photocatalytic behaviour of zinc tetraamino phthalocyanine-silver nanoparticles immobilized on chitosan beads. J. Mol. Catal. A: Chem. 399, 25–32 (2015)CrossRefGoogle Scholar
  44. 44.
    Hu, M.Q., Xu, Y.M., Zhao, J.C.: Efficient photosensitized degradation of 4-Chlorophenol over immobilized aluminum tetrasulfophthalocyanine in the presence of hydrogen peroxide. Langmuir. 20(15), 6302–6307 (2004)CrossRefGoogle Scholar
  45. 45.
    Chiang, K., Amal, R., Tran, T.: Photocatalytic oxidation of cyanide: kinetic and mechanistic studies. J. Mol. Catal. A: Chem. 193(1–2), 285–297 (2003)CrossRefGoogle Scholar
  46. 46.
    Shu, H.Y., Chang, M.C.: Decolorization and mineralization of a phthalocyanine dye C.I. Direct Blue 199 using UV/H2O2 process. J. Hazard. Mater. 125(1–3), 96–101 (2005)CrossRefGoogle Scholar
  47. 47.
    Wu, C.H., Chang, C.L.: Decolorization of reactive red 2 by advanced oxidation processes: comparative studies of homogeneous and heterogeneous systems. J. Hazard. Mater. 128(2–3), 265–272 (2006)CrossRefGoogle Scholar
  48. 48.
    Basturk, E., Karatas, M.: Decolorization of antraquinone dye reactive blue 181 solution by UV/H2O2 process. J. Photochem. Photobiol. A: Chem. 299, 67–72 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Chemical EngineeringHuaihai Institute of TechnologyLianyungangPeople’s Republic of China
  2. 2.School of Materials Science and EngineeringNanyang Technological UniversitySingaporeSingapore
  3. 3.Department of Chemical Engineering and TechnologyChina University of Mining and TechnologyXuzhouPeople’s Republic of China
  4. 4.SORST, Japan Science and Technology Agency (JST)Kawaguchi-shiJapan

Personalised recommendations