Advertisement

A computational study of hydrogen cyanide interaction with the pristine and B, Ga, BGa-doped of (8, 0) zigzag AlPNTs

  • M. Rezaei-Sameti
  • V. Padervand
Original Article

Abstract

The aims of this work, to study the electronic and adsorption properties of the interaction hydrogen cyanide with the pristine and B, Ga, BGa-doped (8, 0) zigzag aluminum phosphide nanotube (AlPNTs) in the gas phase using density function theory. From optimized structures the geometrical, electrical, quantum descriptors such as global hardness, global softness, electrophilicity, gap energy, Fermi level energy, electronic chemical potential, electronegativity, natural bond orbital (NBO), NMR and molecular electrostatic potential (MEP) of all corresponded models are calculated. The results reveal that the B, Ga or BGa atoms doping can improve the adsorption abilities of a HCN gas on surface of AlPNTs. Inspection of the NBO results indicate that the doping B, Ga and BGa having higher polarizability than HCN gas, and thus the adsorption HCN gas alter significantly the electrical properties of AlPNTs from original state. It is noteworthy that the gap energies of all adsorption models are not affected to the HCN adsorption. According to MEP results, a low charge is transferred from the HCN gas to the nanotube ones resulting in a weak ionic bonding in the AlPNTs/HCN complex.

Keywords

AlPNTs DFT Hydrogen cyanide Interaction MEP NBO 

Notes

Acknowledgments

We thank from the nano computational centre of Malayer Universities for supporting this work.

Supplementary material

10847_2016_668_MOESM1_ESM.docx (80 kb)
Supplementary material 1 (DOCX 79 kb)

References

  1. 1.
    World Health Organization (WHO): Concise international chemical assessment document. World Health Organization, Geneva (2004)Google Scholar
  2. 2.
    EPA’s IRIS Program: Evaluating the Science and Process behind Chemical Risk Assessment, 2011: Hearing before the Subcommittee on Investigations and Oversight of the Committee on Science, Space, and Technology, House of Representatives, 112th Cong., 1st Sess., July 14, (2011)Google Scholar
  3. 3.
    Sykes, A.H.: Early studies on the toxicology of cyanide. In: Vennesland, B., Conn, E.E., Knowles, C.J., Westley, J., Wissing, F. (eds.) Cyanide in Biology, pp. 1–9. Academic Press, New York (1981)Google Scholar
  4. 4.
    Baum, M.M., Moss, J.A., Pastel, S.H., Poskrebyshev, G.A.: Hydrogen cyanide exhaust emissions from in-use motor vehicles. Environ. Sci. Technol. 41, 857–862 (2007)CrossRefGoogle Scholar
  5. 5.
    Karlsson, H.L.: Ammonia, nitrous oxide and hydrogen cyanide emissions from five passenger vehicles. Sci. Total Environ. 334–335, 125–132 (2004)CrossRefGoogle Scholar
  6. 6.
    Chen, Z., Yuan, S., Liang, Q.F., Wang, F.C., Yu, Z.H.: Distribution of HCN, NH3, NO and N2 in an entrained flow gasifies. Chem. Eng. J. 148, 312–318 (2009)CrossRefGoogle Scholar
  7. 7.
    Lin, J.Y., Zhang, S., Zhang, L., Min, Z.H., Tay, H.L., Li, C.Z.: HCN and NH3 formation during Coal/Char gasification in the presence of NO. Environ. Sci. Technol. 44, 3719–3723 (2010)CrossRefGoogle Scholar
  8. 8.
    Oliver, T.M., Jugoslav, K., Aleksandar, P., Nikola, D.: Synthetic activated carbons for the removal of hydrogen cyanide from air. Chem. Eng. Proces. 44, 1181–1187 (2005)CrossRefGoogle Scholar
  9. 9.
    Kotdawala, R.R., Kazantzis, N., Thompson, R.W.: Molecular simulation studies of adsorption of hydrogen cyanide and methyl ethyl ketone on zeolite NaX and activated carbon. J. Hazardous. Mater. 159, 169–176 (2008)CrossRefGoogle Scholar
  10. 10.
    Republic, C.: Inclusion of active substances in Annex I or I A to Directive 98/8/EC. Assessment Report, Hydrogen Cyanide (2012)Google Scholar
  11. 11.
    Eddleston, M., et al.: National Poisons Information Service (NPIS). Hydrogen cyanide TXBASE, Report (2013)Google Scholar
  12. 12.
    Dagaut, P., Glarborg, P., Alzueta, M.U.: The oxidation of hydrogen cyanide and related chemistry. Prog. Energy Comb. Sci. 34, 1–46 (2008)CrossRefGoogle Scholar
  13. 13.
    Kröcher, O., Elsener, M.: Hydrolysis and oxidation of gaseous HCN over heterogeneous catalysts. Appl. Cat. B. 92, 75–89 (2009)CrossRefGoogle Scholar
  14. 14.
    Giménez-Lόpez, J., Millera, A., Bilbao, R., Alzueta, M.U.: HCN oxidation in an O2/CO2 atmosphere: an experimental and kinetic modeling study. Comb. Flam. 157, 267–276 (2009)CrossRefGoogle Scholar
  15. 15.
    Seredych, M., Merwe, M., Bandosz, T.J.B.: Effects of surface chemistry on the reactive adsorption of hydrogen cyanide on activated carbons. Carbon 47, 2456–2465 (2009)CrossRefGoogle Scholar
  16. 16.
    Wang, X.Q., Ning, P., Shi, Y., Jiang, M.: Adsorption of low concentration phosphine in yellow phosphorus off-gas by impregnated activated carbon. J. Hazardous. Mater. 171, 588–593 (2009)CrossRefGoogle Scholar
  17. 17.
    Zhao, H.B., Tonkyn, R.G., Barlow, S.E., Koel, B.E., Peden, C.H.F.: Catalytic oxidation of HCN over a 0.5% Pt/Al2O3. Appl. Cat. B- Environ. 65, 282–290 (2006)CrossRefGoogle Scholar
  18. 18.
    Peralta-Inga, Z., Lane, P., Murray, J., Boyd, S., Grice, M., O’Connor, C., Politzer, P.: Characterization of surface electrostatic potentials of some (5, 5) and (n, 1) carbon and boron/nitrogen model nanotubes. Nano Lett. 3, 21–28 (2003)CrossRefGoogle Scholar
  19. 19.
    Parr, R.G., Yang, W.: Density-functional theory of atoms and molecules. Oxford University Press, New York (1989)Google Scholar
  20. 20.
    Wang, R., Zhang, D.: Theoretical study of the adsorption of carbon monoxide on pristine and silicon-doped boron nitride nanotubes. Aust. J. Chem. 61, 941–946 (2008)CrossRefGoogle Scholar
  21. 21.
    Wang, R., Zhang, D., Liu, Y., Liu, C.: A theoretical study of silicon-doped boron nitride nanotubes serving as a potential chemical sensor for hydrogen cyanide. Nanotechnology 20(50), 505704 (2009)CrossRefGoogle Scholar
  22. 22.
    Beheshtian, J., Ahmadi Peyghan, A., Bagheri, Z.: Sensing behavior of Al-rich AlN nanotube toward hydrogen cyanide. J. Mol. Model. 19, 2197–2203 (2013)CrossRefGoogle Scholar
  23. 23.
    Zhao, M., Yang, F., Xue, Y., Xiao, D., Guo, Y.: Adsorption of HCN on reduced graphene oxides: a first-principles study. J. Mol. Model. 20, 2214 (2014)CrossRefGoogle Scholar
  24. 24.
    Zhang, Y.M., Zhang, D.J., Liu, C.: Novel chemical sensor for cyanides: boron-doped carbon nanotubes. J. Phys. Chem. B. 110, 4671–4674 (2006)CrossRefGoogle Scholar
  25. 25.
    Zhou, X., Tian, W.Q.: Sensitivity of (5,5) SWSiCNTs and SWSiCNTs with stone-wales defects toward hazardous molecules. J. Phys. Chem. C 115, 11493–11499 (2011)CrossRefGoogle Scholar
  26. 26.
    Wang, R.X., Zhang, D.J., Liu, Y.J., Liu, C.B.: A theoretical study of silicon-doped boron nitride nanotubes serving as a potential chemical sensor for hydrogen cyanide. Nanotechnology 20, 505704 (2009)CrossRefGoogle Scholar
  27. 27.
    Peyghan, A.A., Hadipour, N.L., Bagheri, Z.: Effects of Al doping and double-antisite defect on the adsorption of HCN on a BC2 N nanotube: density functional theory studies. J. Phys. Chem. C 117, 2427–2432 (2013)CrossRefGoogle Scholar
  28. 28.
    Rastegar, S.F., Peyghan, A.A., Hadipour, N.L.: Response of Si- and Al-doped graphenes toward HCN: a computational study. Appl. Surf. Sci. 265, 412–417 (2013)CrossRefGoogle Scholar
  29. 29.
    Rezaei-Sameti, M.: Gallium doped in armchair and zigzag models of boron phosphide nanotubes (BPNTs): a NMR study. Phys. B 407, 3717–3721 (2012)CrossRefGoogle Scholar
  30. 30.
    Rezaei-Sameti, M., Kazemi, A.: A computational study on the interaction between O2 and pristine and Ge-doped aluminum phosphide nanotubes. Turk. J. Phys. 39, 128–136 (2015)CrossRefGoogle Scholar
  31. 31.
    Rezaei-Sameti, M.: Effects of influence of carbon ring-doping on NMR parameters of boron phosphide nanotubes: a DFT. Arabian. J. Chem. 8, 168–173 (2015)CrossRefGoogle Scholar
  32. 32.
    Kam, N.W.S., Dai, H.: Carbon nanotubes as intracellular protein transporters: generality and biological functionality. J. Am. Chem. Soc. 127, 6021 (2005)CrossRefGoogle Scholar
  33. 33.
    Chattaraj, P.K., Sarkar, U., Roy, D.R.: Electrophilicity index NCBI. Chem. Rev. 106, 2065 (2006)CrossRefGoogle Scholar
  34. 34.
    Hazarika, K.K., Baruah, N.C., Deka, R.C.: Molecular structure and reactivity of antituberculosis drug molecules isoniazid, pyrazinamide, and 2-methylheptylisonicotinate: a density functional approach. Struct. Chem. 20, 1079 (2009)CrossRefGoogle Scholar
  35. 35.
    Schmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J. H., Koseki, S., Matsunaga, N., Nguyen, K.A., Su, S.J., Windus, T.L., Dupuis, M., Montgomery, J.A.: General Atomic and Molecular Electronic Structure System. J. Com. Chem. 14, 1347–1363 (1993)Google Scholar
  36. 36.
    James, C., Amal Raj, A., Reghunathan, R., Hubert Joe, I., Jaya Kumar, V.S.: Structural conformation and vibrational spectroscopic studies of 2,6-bis(p-N, N-dimethyl benzylidene)cyclohexanone using density functional theory. J. Raman. Spec. 37, 1381–1392 (2006)CrossRefGoogle Scholar
  37. 37.
    Na, L.J., Rang, C.Z., Fang, Y.S.: Study on the prediction of visible absorption maxima of azobenzene compounds. Zhejiang. J. Univ. Sci. 6B, 584–589 (2005)Google Scholar
  38. 38.
    Rajith, L., Jissy, A.K., Kumar, K.G., Datta, A.: Mechanistic study for the facile oxidation of trimethoprim on a manganese porphyrin incorporated glassy carbon electrode. J. Phys. Chem. C 115, 21858–21864 (2011)CrossRefGoogle Scholar
  39. 39.
    Tabtimsai, C., Keawwangchai, S., Nunthaboot, N., Ruangpornvisuti, V., Wanno, B.: Density functional investigation of hydrogen gas adsorption on Fe-doped pristine and stone-wales defected single-walled carbon nanotubes. J. Mol. Model. 18, 3941 (2012)CrossRefGoogle Scholar
  40. 40.
    Scrocco, E., Tomasi, J.: The electrostatic molecular potential as a tool for the interpretation of molecular properties. Top. Curr. Chem. 42, 95 (1973)Google Scholar
  41. 41.
    Shankar, R.Y.B., Prasad, M.V.S., Udaya, S.N., Veeraiah, V.: Vibrational (FT-IR, FT-Raman) and UV–Visible spectroscopic studies, HOMO–LUMO, NBO, NLO and MEP analysis of Benzyl (imino (1H-pyrazol-1-yl) methyl) carbamate using DFT calculations. J. Mol. Stru. 1108, 567–582 (2016)CrossRefGoogle Scholar
  42. 42.
    Pir, H., Gunay, N., Tamer, O., Avc, D., Atalay, Y.: Theoretical investigation of 5-(2-Acetoxyethyl)-6-methylpyrimidin-2, 4-dione: conformational study, NBO and NLO analysis, molecular structure and NMR spectra. SpectraChim. Acta. Part A. 112, 331–342 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Applied Chemistry, Faculty of ScienceMalayer UniversityMalayerIran

Personalised recommendations