Palladium complexes with hexamethyl tetraazacyclotetradecadiene (L) and isomers of its reduced form (‘tet-a’ & ‘tet-b’): synthesis, characterization and antimicrobial studies

  • Shawon Barua
  • Saswata Rabi
  • Anup Kumar Datta
  • Eshita Debanath
  • Ratul Kumar Shil
  • Tapashi Ghosh Roy
Original Article


The hexamethyl tetraazacyclotetradecadiene dihydroperchlorate Me6[14]diene. 2HClO4 (L·2HClO4) on reduction produced two isomeric C- chiral ligands ‘tet-a’ and ‘tet-b’. Reactions of these isomeric ligands with PdCl2 produced square planar tetrachlorodipalladium(II) complexes, [PdL′][PdCl4] (L′ = ‘tet-a’ or ‘tet-b’). Similar reactions of L·2HClO4 with different palladium(II) salts, K2Pd(SCN)4, K2PdBr4 and K2PdI4 produced octahedral palladium(IV) thiocyanato, bromido and iodido complexes. Tetrachlorodipalladium(II) complex of isomeric ligands [PdL′][PdCl4] underwent substitution reactions with KCNS and KNO2 to form tetrathiocyanato dipalladium(II) and tetranitrodipalladium(II) complexes, [PdL′][Pd(NCS)4] and [PdL′][Pd(NO2)4] respectively. However the same tetrachloro complexes underwent axial addition reactions with KBr and KI to form dibromidopalladium(IV) dibromide and diiodidopalladium(IV) diiodide complexes, [PdL′][PdBr2]Br2 and [PdL′][PdI2]I2 respectively. The complexes were characterized on the basis of elemental, spectroscopic, magnetochemical and conductometric analysis. The antibacterial and antifungal activities of the ligands and their complexes have been investigated towards different gram positive and gram negative bacteria and fungi.


Tetraazamacrocyclic ligands Palladium complexes Spectroscopic studies Addition and substitution reactions Antibacterial and antifungal activities 



The authors would like to extend their sincere appreciation to the University Grants Commission, Bangladesh, to give a research Grant to Professor Dr. Tapashi Ghosh Roy, Department of Chemistry, University of Chittagong, Chittagong-4331, Bangladesh.


  1. 1.
    Singh, D., Kumar, K., Kumar, R., Singh, J.: Template synthesis and characterization of biologically active transition metal complexes comprising 14-membered tetraazamacrocyclic ligand. J. Serb. Chem. Soc. 75(2), 217–228 (2010)CrossRefGoogle Scholar
  2. 2.
    Shiekh, R.A., Shreaz, S., Khan, L.A., Hashmi, A.A.: Development and characterization of bioactive macrocyclic metal complexes, use as a potential drug. J. Chem. Pharm. Res. 2(2), 172–185 (2010)Google Scholar
  3. 3.
    Hyun-soon, C., Kayhan, G., Dangshe, Diane, M.E., Terrish, M.O., Martin, W.B.: Synthesis and biological evaluation of novel macrocyclic ligands with pendent donor groups as potential yttrium chelators for radioimmunotherapy with improved complex formation kinetics. J. Med. Chem. 45(16), 3458–3464 (2002)CrossRefGoogle Scholar
  4. 4.
    EI-Boraey, H.A., EL-Gammal, O.A.: New 15-membered tetraaza (N4) macrocyclic ligand and its transition metal complexes: spectral, magnetic, thermal and anticancer activity. Spectrochim. Acta. A 138, 553–562 (2015)CrossRefGoogle Scholar
  5. 5.
    Shankarwar, S.G., Nagolkar, B.B., Shelke, V.A., Chondhekar, T.K.: Synthesis, spectral, thermal and antimicrobial studies of transition metal complexes of 14-membered tetraaza[N4] macrocyclic ligand. Spectrochim. Acta. A 145, 188–193 (2015)CrossRefGoogle Scholar
  6. 6.
    Suh, M.P., Moon, H.R., Lee, E.Y., Jang, S.Y.: A redox-active two-dimensional coordination polymer: preparation of silver and gold nanoparticles and crystal dynamics on guest removal. J. Am. Chem. Soc. 128, 4710–4718 (2006)CrossRefGoogle Scholar
  7. 7.
    Arai, H., Matshima, Y., Eguchi, T., Kazutoshi, S., Katsumi, K.: Non-fatty acyl polyketide starter in the biosynthesis of vicenistatin, an antitumor macrolactam antibiotic. Tetrahedron Lett. 39, 3181 (1998)CrossRefGoogle Scholar
  8. 8.
    Biswas, F.B., Roy, T.G., Rahman, M.A., Emran, T.B.: An in vitro antibacterial and antifungal effects of cadmium(II) complexes of hexamethyltetraazacyclotetradecadiene and isomers of its saturated analogue. Asian Pac. J. Trop. Biomed. 4(Suppl2), 618–623 (2014)Google Scholar
  9. 9.
    Yasmin, S., Suarez, S., Doctorvich, F., Roy, T.G., Baggio, R.: Three transition-metal complexes with the macrocyclic ligand meso-5, 7, 7, 12, 14, 14-hexamethyl-1, 4, 8, 11-tetraazacyclotetradecane (L):[Cu(ClO4)2(L)],[Zn(NO3)2(L)] and [CuCl(L)(H2O)]Cl. Acta Crystallogr. A C69, 862–867 (2013)Google Scholar
  10. 10.
    Roy, T.G., Hazari, S.K.H., Pal, B.C., Dey, L., Anwar, N., Bhattacharjee, S.C.: Synthesis, characterization and antimicrobial activities of some copper(II) and Nickel(II) complexes of hexamethyl tetraaza-cyclotetradecadiene Me6[14] diene and their substitution products. Chittagong Univ. J. Sci. 35, 122–142 (2012)Google Scholar
  11. 11.
    Rathee, N., Verma, K.K.: Studies on nickel(II) and palladium(II) complexes with some tetraazamacrocycles containing tellurium. J. Serb. Chem. Soc. 77(3), 325–333 (2012)CrossRefGoogle Scholar
  12. 12.
    Shin, S.H., Kim, D.I., Lee, Y.K., Lee, H., Bae, Z.U., Na, H.G., Roy, T.G., Park, Y.C.: Synthesis of asymmetric dibenzoylated tetraazacyclo[14]annulenepalladium(II) complexes: structure of 3,10-di(p-methylbenzoyl)-2,4,9,11-tetramethyl-1,5,8,12- monobenzotetraazacyclo[14]annulenepalladium(II) Bull. Korean Chem. Soc. 28, 1847 (2007)CrossRefGoogle Scholar
  13. 13.
    Camacho, D.H., Salo, E.V., Guan, Z., Ziller, J.W.: Nickel(II) and palladium(II) complexes with an alkane-bridged macrocyclic ligand: synthesis, characterization, and polymerization tests. Organometallics 24(21), 4933 (2005)CrossRefGoogle Scholar
  14. 14.
    Roy, T.G., Hazari, S.K.H., Barua, K.K., Kim, D.I., Park, Y.C., Tiekink, E.R.T.: Syntheses, characterization and anti-microbial activities of palladium(II) and palladium(IV) complexes of 3,10-C-meso-Me8[14]diene (L1) and its reduced isomeric anes (LA, LB and LC). Crystal and molecular structure of [PdL1][Pd(SCN)4]. Appl. Organomet. Chem. 22, 637 (2008)CrossRefGoogle Scholar
  15. 15.
    Ray, R.W., Lawrance, G.A., Curtis, N.F.: A convenient synthesis of the tetra-aza-macrocyclic ligands trans-[14]-diene, tet a, and tet b. J. Chem. Sot. Parkins Trans. 1, 591–593 (1975)Google Scholar
  16. 16.
    Roy, T.G., Hazari, S.K.H., Dey, B.K., Sutradhar, R., Dey, L., Anowar, N., Tiekink, E.R.T.: Axial ligand substitution in diastereoisomeric trans-[Co(Me8[14]ane)Cl2]+ complexes and their anti-fungal activities. J. Coord. Chem. 59(3), 351–362 (2006)CrossRefGoogle Scholar
  17. 17.
    Begum, K.: Synthesis, characterization and biomedical properties of cobalt(III) complexes of multiazacylotetradecadiene and its C-chiral isomers. M. Sc. Thesis, Department of Chemistry, University of Chittagong (2011)Google Scholar
  18. 18.
    Roy, T.G., Hazari, S.K.H., Dey, B.K., Chakrabarti, S., Tiekink, E.R.T.: Synthesis, characterisation and antifungal activities of some new copper(II) complexes of octamethyl tetraazacyclotetradecadiene. Metal Based Drugs 6(6), 345–354 (1999)CrossRefGoogle Scholar
  19. 19.
    Roy, T.G., Nath, B.C., Begum, Ng, K.S.W., Tiekink, E.R.T.: Trans-(5,7,7, 12, 14,14-Hexamethyl-1,4,8,11-tetraazacyclotetradeca-4,11-diene-ķ 4 N,N′,N′′N′′′,N′′′′)bis(nitrite-ķN)-cobalt(III) perchlorate hemihydrate. Acta Cryst. E67 m, 1676 (2011)Google Scholar
  20. 20.
    Bembi, R., Bhardwaj, V.K., Singh, R., Teneja, K., Aftab, S.: Synthesis and characterization of copper(II), nickel(II) and cobalt(III) complexes with 1,4,8,11-tetraazacyclohexadecane and 1,4,8,11-tetraazacyclopheptadecane. Inorg. Chem. 23, 4153 (1984)CrossRefGoogle Scholar
  21. 21.
    Ray, R.W., Bembi, R., Moodie, W.T., Norman, P.R.: Synthetic, kinetic, and stereochemical studies on the copper(II), nickel(II), and cobalt(III) complexes of 1,4,7,10,13-penta-aza-cyclopentadecane. J. Chem. Soc. Dalton 11, 2131 (1982)Google Scholar
  22. 22.
    Bembi, R., Roy, T.G., Jhanji, A.K.: Copper(II), nickel(II) and cobalt(III) complexes with new macrocylic ligands, 6,14-Dimethyl 1,5,9,13-tetraazacylohexadeca-5, 13-diene (Me2[16]diene) and C-meso- and C-rac- 6, 14- dimethyl-1,5,9,13- tetraazacyclohexadecane (C-meso- and C-rac-. Me2[16]ane. Inorg. Chem. 27, 496 (1988)CrossRefGoogle Scholar
  23. 23.
    Bembi, R., Roy, T.G., Jhanji, A.K., Maheswari, A.: Polyazamacrocycles. Part 7 kinetics of aquation of trans-dichloro and trans-chloro(nitro) complexes of cobalt(III) with teraaza macrocycles. J. Chem. Soc. Dalton Trans. 11, 3531–3534 (1990)CrossRefGoogle Scholar
  24. 24.
    Roy, T.G., Hazari, S.K.H., Dey, B.K., Miah, H.A., Olbrich, F., Rehder, D.: Syntheses and antimicrobial activities of isomers of N(4), N(11)-dimethyl-3,10-C-meso- 3,5,7,7,10,12,14,14-octamethyl- 1,4,8,11- tetraazacyclotetradecane and their nickel(II) complexes. Inorg. Chem. 46, 5372–5380 (2007)CrossRefGoogle Scholar
  25. 25.
    Roy, T.G., Hazari, S.K.H., Dey, B.K., Dutta, S., Monsur, M.A., Tikink, E.R.T.: Axial addition in diastereoisomeric [Cu(Me8[14]ane)](ClO4)2] complexes: anti-fungal and anti-bacterial activity. J. Coord. Chem. 59(15), 1757–1767 (2006)CrossRefGoogle Scholar
  26. 26.
    Kim, D.I., Kim, E.H., Byun, J.C., Choi, J.H., Na, H.G., Park, Y.C.: Benzoylation and properties of 14-π nickel(II)-tetraazaannulene complexes with substituents on the phenyl ring. J. Coord. Chem. 55, 505–516 (2002)CrossRefGoogle Scholar
  27. 27.
    Roy, T.G., Hazari, S.K.H., Dey, B.K., Miah, H., Bader, A.C., Rehder, D.: Copper(II) and nickel(II) complexes of N,N-bis(2-hydroxyethyl)-octamethyl-1,4,8,11-tetraaza-cyclotetradecane. Eur. J. Inorg. Chem. 2004, 4115 (2004)CrossRefGoogle Scholar
  28. 28.
    Roy, T.G., Hazari, S.K.H., Dey, B.K., Chakrabarti, S.: Synthesis, characterization and antimicrobial activities of a NS-chelating ligand with ferrocene backbone and some of its metal complexes. Ceylon J. Sci. Phys. Sci. 11, 37 (2006)Google Scholar
  29. 29.
    Roy, T.G., Hazari, S.K.H., Nath, R.K., Nath, B.C., Manchur, A.: Synthesis and antimicrobial activities of some cadmium(II) and zinc(II) complexes of 3, 10- C- meso- 3, 5, 7, 7, 10, 12, 14, 14-octamethyl-1, 4, 8, 11-tetraazacyclotetradecadiene (L1). J. Bangladesh Chem. Soc. 22(2), 111 (2009)Google Scholar
  30. 30.
    Roy, T.G., Hazari, S.K.H., Dey, B.K., Nath, B.C., Dutta, A., Olbrich, F., Rehder, D.: Syntheses, electrolytic behaviour and antifungal activities of Zn(II) complexes of isomers of 3,10-C-meso-3,5,7,7,10,12,14,14-octamethyl-1,4,8,11-tetraazacyclotetradecane (L). Crystal and molecular structure of [ZnLB(NO3)]NO3 (LB = a, e, a, e-L). Inorg. Chim. Acta 371, 63–70 (2011)CrossRefGoogle Scholar
  31. 31.
    Roy, T.G., Hazari, S.K.H., Dey, B.K., Miah, H., Rahman, R.M.S., Kim, D.I.I., Park, Y.C.: Synthesis, electrolytic behaviour and antimicrobial activities of cadmium complexes of isomers of 3,10-C-meso-3,5,7,7,10,12,14,14-octamethyl-1,4,8,11-tetraazacyclotetradecane. J. Coord. Chem. 40, 1567–1578 (2007)CrossRefGoogle Scholar
  32. 32.
    Salehi, M., Hasanzadeh, M.: Characterization, crystal structures, electrochemical and antibacterial studies of four new binuclear cobalt(III) complexes derived from o-aminobenzyl alcohol. Inorg. Chim. Acta 426, 6–14 (2015)CrossRefGoogle Scholar
  33. 33.
    Dharmaraj, N., Viswanathamurthi, P., Nataranjan, K.: Ruthenium(II) complexes containing bidentate Schiff bases and their antifungal activity. Transit. Met. Chem. 26, 105–109 (2001)CrossRefGoogle Scholar
  34. 34.
    Jorgensen, J.H., Ferraro, M.J., Clin, : Antimicrobial susceptibility testing: a review of general principles and contemporary practices. Infect. Dis. 49, 1749–1755 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Shawon Barua
    • 1
  • Saswata Rabi
    • 1
  • Anup Kumar Datta
    • 1
  • Eshita Debanath
    • 1
  • Ratul Kumar Shil
    • 1
  • Tapashi Ghosh Roy
    • 1
  1. 1.Department of ChemistryUniversity of ChittagongChittagongBangladesh

Personalised recommendations