Study on the inclusion behaviour and solid inclusion complex of lomustine with cyclodextrins

  • Wei Sun
  • Meng-Yao She
  • Zheng Yang
  • Yue-Lu Zhu
  • Si-Yue Ma
  • Zhen Shi
  • Jian-Li Li
Original Article


The water soluble solid inclusion complex of three native or modified cyclodextrins (CDs) including β-cyclodextrin (β-CD), hydroxypropyl-β-cyclodextrin (Hp-β-CD) and 2,6-di-o-methyl-β-cyclodextrin (DIME-β-CD) and Lomustine (CCNU) were presented with the orthogonal experiment investigation of the reaction conditions. The inclusion behaviors were comparatively investigated by nuclear magnetic resonance in combination with infrared spectroscopy, thermogravimetric analysis, X-ray diffractometry and scanning electron microphotographs. The experimental results jointly demonstrated that the entrance of CCNU into the cavity of the CDs by intermolecular forces as well as hydrophobic forces and resulting in the significantly improvement of the thermostability of CCNU.

Graphical Abstract


Cyclodextrin Lomustine Inclusion NMR 



We thank the National Natural Science Foundation of China (NSFC 21572177; 21272184; 21103137 and J1210057), the Shaanxi Provincial Natural Science Fund Project (No. 2015JZ003), the Xi’an City Science and Technology Project (Nos. CXY1511(3)), the Northwest University Science Foundation for Postgraduate Students (Nos. YZZ14052), the Chinese National Innovation Experiment Program for University Students (No. 201510697004) and Scientific Research Cultivating Fund of Xi’an University of Science and Technology (No. 201619) for financial support.

Supplementary material

10847_2016_640_MOESM1_ESM.doc (14.6 mb)
Supplementary material 1 (DOC 14949 kb)


  1. 1.
    Harada, A., Takashima, Y., Nakahata, M.: Supramolecular polymeric materials via cyclodextrin-guest interactions. Acc. Chem. Res. 47, 2128–2140 (2014)CrossRefGoogle Scholar
  2. 2.
    Zhang, J., Ma, P.X.: Cyclodextrin-based supramolecular systems for drug delivery: recent progress and future perspective. Adv. Drug Deliv. Rev. 65, 1215–1233 (2013)CrossRefGoogle Scholar
  3. 3.
    Moghaddam, S., Inoue, Y., Gilson, M.K.: Host-guest complexes with protein-ligand-like affinities: computational analysis and design. J. Am. Chem. Soc. 131, 4012–4021 (2009)CrossRefGoogle Scholar
  4. 4.
    Szejtli, J.: Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 98, 1743–1753 (1998)CrossRefGoogle Scholar
  5. 5.
    Connors, K.A.: The stability of cyclodextrin complexes in solution. Chem. Rev. 97, 1325–1357 (1997)CrossRefGoogle Scholar
  6. 6.
    Ghale, G., Nau, W.M.: Dynamically analyte-responsive macrocyclic host-fluorophore systems. Acc. Chem. Res. 47, 2150–2159 (2014)CrossRefGoogle Scholar
  7. 7.
    Szente, L., Szeman, J.: Cyclodextrins in analytical chemistry: host-guest type molecular recognition. Anal. Chem. 85, 8024–8030 (2013)CrossRefGoogle Scholar
  8. 8.
    Zhong, C., Mu, T., Wang, L., et al.: Unexpected fluorescent behavior of a 4-amino-1,8-naphthalimide derived β-cyclodextrin: conformation analysis and sensing properties. Chem. Commun. 27, 4091–4093 (2009)CrossRefGoogle Scholar
  9. 9.
    Simoes, S.M.N., Rey-Rico, A., Concheiro, A.C.: Supramolecular cyclodextrin-based drug nanocarriers. Chem. Commun. 51, 6275–6289 (2015)CrossRefGoogle Scholar
  10. 10.
    Chen, Y., Liu, Y.: Cyclodextrin-based bioactive supramolecular assemblies. Chem. Soc. Rev. 39, 495–505 (2010)CrossRefGoogle Scholar
  11. 11.
    Karakhanov, E.A., Maximov, A.L.: Molecular imprinting technique for the design of cyclodextrin-based materials and their application in catalysis. Curr. Org. Chem. 14, 1284–1295 (2010)CrossRefGoogle Scholar
  12. 12.
    Yang, S.Y., Wang, X.L., Yang, Z.Q.: Preparation of compound lomustine-iohexol thermosensitive liposomes and the in vitro release characteristics. Chin. J. New Drugs 23, 338–343 (2014)Google Scholar
  13. 13.
    Bethune, C.R., Geyer, R.J., Spence, A.M., et al.: Lipid association improves the therapeutic index of lomustine [1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea] to suppress 36B-10 tumor growth in rats. Cancer Res. 61, 3669–3674 (2001)Google Scholar
  14. 14.
    Lewandowicz, G.M., Harding, B., Harkness, W., et al.: Chemosensitivity in childhood brain tumours in vitro: evidence of differential sensitivity to lomustine (CCNU) and vincristine. Eur. J. Cancer 36, 1955–1964 (2000)CrossRefGoogle Scholar
  15. 15.
    Packer, R.J., Sutton, L.N., Elterman, R., et al.: Outcome for children with medulloblastoma treated with radiation and cisplatin, CCNU, and vincristine chemotherapy. J. Neurosurg. 81, 690–698 (1994)CrossRefGoogle Scholar
  16. 16.
    Roci, E., Cakani, B., Fejzo, G., et al.: Low-grade glioma growth kinetics before and after CCNU alone. J. Neurol. Sci. 333, e663–e664 (2013)CrossRefGoogle Scholar
  17. 17.
    Musser, M.L., Quinn, H.T., Chretin, J.D.: Low apparent risk of CCNU (lomustine)-associated clinical hepatotoxicity in cats. J. Feline Med. Surg. 14, 871–875 (2012)CrossRefGoogle Scholar
  18. 18.
    Pajzderska, A., Mielcarek, J., Wasicki, J.: Complex and mixture of β-cyclodextrin with diazepam characterisedby 1H NMR and atom–atom potential methods. Carbohydr. Res. 398, 56–62 (2014)CrossRefGoogle Scholar
  19. 19.
    Syed, M.A., Santosh, K.U.: Complexation studies of pioglitazone hydrochloride and β-cyclodextrin: NMR (1H, ROESY) spectroscopic study in solution. J. Incl. Phenom. Macrocycl. Chem. 62, 161–165 (2008)CrossRefGoogle Scholar
  20. 20.
    Srinivasan, K., Stalin, T.: Study of inclusion complex between 2,6-dinitrobenzoic acid and β-cyclodextrin by 1H NMR, 2D 1H NMR (ROESY), FT-IR, XRD, SEM and photophysical methods. Spectrochim. Acta A 130, 105–115 (2014)CrossRefGoogle Scholar
  21. 21.
    Louiz, S., Labiadh, H., Abderrahim, R.: Synthesis and spectroscopy studies of the inclusion complex of 3-amino-5-methyl pyrazole with beta-cyclodextrin. Spectrochim. Acta A 134, 276–282 (2015)CrossRefGoogle Scholar
  22. 22.
    Prabu, S., Swaminathan, M., Sivakumar, K., et al.: Preparation, characterization and molecular modeling studies of the inclusion complex of caffeine with beta-cyclodextrin. J. Mol. Struct. 1099, 616–624 (2015)CrossRefGoogle Scholar
  23. 23.
    Stalin, T., Srinivasan, K., Sivakumar, K., et al.: Preparation and characterizations of solid/aqueous phases inclusion complex of 2,4-dinitroaniline with β-cyclodextrin. Carbohydr. Polym. 107, 72–84 (2014)CrossRefGoogle Scholar
  24. 24.
    Kemelbekov, U., Luo, Y., Orynbekova, Z., et al.: IR, UV and NMR studies of β-cyclodextrin inclusion complexes of kazcaine and prosidol bases. J. Incl. Phenom. Macrocycl. Chem. 69, 181–190 (2011)CrossRefGoogle Scholar
  25. 25.
    He, J.: Effects of several inter-molecular interactions on the inclusion between methyl substituted β-cyclodextrin and some linear macromolecule in supercritical carbon dioxide medium. J. Incl. Phenom. Macrocycl. Chem. 73, 237–246 (2012)CrossRefGoogle Scholar
  26. 26.
    Zhang, J.Q., Jiang, K.M., An, K., et al.: Novel water-soluble fisetin/cyclodextrins inclusion complexes: preparation, characterization, molecular docking and bioavailability. Carbohydr. Res. 418, 20–28 (2015)CrossRefGoogle Scholar
  27. 27.
    Rudrangi, S.R.S., Trivedi, V., Mitchell, J.C., et al.: Preparation of olanzapine and methyl-β-cyclodextrin complexes using a single-step, organic solvent-free supercritical fluid process: an approach to enhance the solubility and dissolution properties. Int. J. Pharm. 494, 408–416 (2015)CrossRefGoogle Scholar
  28. 28.
    Periasamy, R., Kothainayaki, S., Sivakumar, K.: Preparation, physicochemical analysis and molecular modeling investigation of 2,2′-Bipyridine: β-Cyclodextrin inclusion complex in solution and solid state. J. Mol. Struct. 1100, 59–69 (2015)CrossRefGoogle Scholar
  29. 29.
    Yu, C.H., Hu, B.: Novel combined stir bar sorptive extraction coupled with ultrasonic assisted extraction for the determination of brominated flame retardants in environmental samples using high performance liquid chromatography. J. Chromatogr. A 1160, 71–80 (2007)CrossRefGoogle Scholar
  30. 30.
    Zhang, H.J., Liu, Y.N., Wang, M., et al.: One-pot β-cyclodextrin-assisted extraction of active ingredients from Xue–Zhi–Ning basing its encapsulated ability. Carbohydr. Polym. 132, 437–443 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Wei Sun
    • 1
  • Meng-Yao She
    • 1
  • Zheng Yang
    • 1
    • 2
  • Yue-Lu Zhu
    • 1
  • Si-Yue Ma
    • 1
  • Zhen Shi
    • 1
  • Jian-Li Li
    • 1
  1. 1.Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials ScienceNorthwest UniversityXi’anChina
  2. 2.School of Chemistry & Chemical EngineeringXi’an University of Science and TechnologyXi’anChina

Personalised recommendations