Advertisement

The functionalization of magnetite nanoparticles by hydroxyl substituted diazacrown ether, able to mimic natural siderophores, and investigation of their antimicrobial activity

  • Ulviyya Alimammad Hasanova
  • Mahammadali Ahmad Ramazanov
  • Abel Mammadali Maharramov
  • Zarema Gakhramanova
  • Sarvinaz Faiq Hajiyeva
  • Leyla Vezirova
  • Goncha Malik Eyvazova
  • Flora Vidadi Hajiyeva
  • Parvana Huseynova
  • Zohrab Agamaliyev
Original Article

Abstract

In this work we report of functionalization of magnetite nanoparticles by hydroxyl containing diazacrown ether—macroheterocycle (MC) that is able to mimic the properties of natural siderophores. The structure of synthesized crown ether was investigated by NMR, mass-, FTIR spectroscopy methods. The morphology of prepared MC@Fe3O4 nano-ensembles was analysed by scanning electron microscopy SEM, X-ray diffraction XRD analysis methods. The quantitative analysis of nanostructures was determined by atom absorbance spectroscopy as well as on the basis of Lambert–Beer law by UV spectroscopy method. It was found that the synthesized compounds were effective against gram-negative microorganisms Escherichia coli, Klebsiella spp. and gram-positive Staphylococcus aureus, having multi drug resistance properties.

Keywords

Macrocycles Crown ether Supramolecular chemistry Siderophores Magnetite nanoparticles 

References

  1. 1.
    Steed, J.W.,Atwood, J.L.: Supramolecular chemistry. 2nd edition, Chapter 1.7, pp. 27–38, Wiley, Hoboken (2009). ISBN: 978-0-470-51233-3Google Scholar
  2. 2.
    Cragg, P.J.: Supramolecular chemistry: from biological inspiration to biomedical applications. Springer, Heidelberg (2010). doi: 10.1007/978-90-481-2582-1, e-ISBN: 9789048125821; 9789048125814Google Scholar
  3. 3.
    Liu, L., Chen, S.: Theoretical study on cyclopeptides as the nanocarriers for Li+, Na+, K+ and F, Cl, Br. J. Nanomater. (2015). doi: 10.1155/2015/276191 Google Scholar
  4. 4.
    Jones, C.J., Thornback, J.R.: Medicinal applications of coordination chemistry, the royal society of chemistry. Chapter 4, pp. 203–205, (2007). ISBN: 978-0-85404-596-9Google Scholar
  5. 5.
    Nabeshima, T.: Ag+ selective macrocycles containing soft ligating moieties and regulation of Ag+ binding. J. Incl. Phenom. Mol. Recognit. Chem. 32(2–3), 331–345 (1998). doi: 10.1023/A:1008079830979, Print ISSN: 0923-0750, Online ISSN: 1573-1111Google Scholar
  6. 6.
    Lehn, J.M.: Supramolecular chemistry concepts and perspectives. VCH, Weinheim (1995). ISBN: 3-527-29311-6 (Softcover), ISBN: 3-527-29312-4 (Hardcover)Google Scholar
  7. 7.
    Uskoković, V.: Nanostructured platforms for the sustained and local delivery of antibiotics in the treatment of osteomyelitis. Crit. Rev. Ther. Drug Carr. Syst. 32(1), 1–59 (2015)CrossRefGoogle Scholar
  8. 8.
    Dorniani, D., bin Hussein, M.Z., Kura, A.U., Fakurazi, S., Shaari, A.H., Ahmad, Z.: Preparation and characterization of 6-mercaptopurine-coated magnetite nanoparticles as a drug delivery system. Drug Des. Dev. Ther. 7, 1015–1026 (2013). doi: 10.2147/DDDT.S43035 CrossRefGoogle Scholar
  9. 9.
    Grumezescu, A.M., Gestal, M.C., Holban, A.M., Grumezescu, V., Vasile, B.Ş., Mogoantă, L., Iordache, F., Bleotu, C., Mogoşanu, G.D.: Biocompatible Fe3O4 increases the efficacy of amoxicillin delivery against gram-positive and gram-negative bacteria. Molecules 19, 5013–5027 (2014). doi: 10.3390/molecules19045013 CrossRefGoogle Scholar
  10. 10.
    Latorre, M., Rinaldi, C.: Applications of magnetic nanoparticles in medicine: magnetic fluid hyperthermia. Puerto Ric. Health Sci. J. 28(3), 227–238 (2009). ISSN: 0738-0658Google Scholar
  11. 11.
    Massart, R.: Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans. Magn. 17, 1247–1248 (1981). doi: 10.1109/TMAG.1981.1061188 CrossRefGoogle Scholar
  12. 12.
    Mayrhofer, S., Domig, K.J., Mair, C., Zitz, U., Huys, G., Kneifel, W.: Comparison of broth microdilution, Etest, and agar disk diffusion methods for antimicrobial susceptibility testing of Lactobacillus acidophilus group members. Appl. Environ. Microbiol. 12, 3745–3748 (2008). doi: 10.1128/AEM.02849-07 CrossRefGoogle Scholar
  13. 13.
    Jorgensen, J.H., Lee, J.C.: Microdilution technique for antimicrobial susceptibility testing of Haemofilus influenza. Antimicrob. Agents Chemother. 8, 610–611 (1975). doi: 10.1128/AAC.8.5.610 CrossRefGoogle Scholar
  14. 14.
    Erriu, M., Genta, G., Tuveri, E., Orrù, G., Barbato, G., Levi, R.: Microtiter spectrophotometric biofilm production assay analyzed with metrological methods and uncertainty evaluation. Measurement 45, 1083–1088 (2012)CrossRefGoogle Scholar
  15. 15.
    Grumezescu, A.M., Cotar, A.I., Andronescu, E., Ficai, A., Ghitulica, C.D., Grumezescu, V., Vasile, B.S., Chifiriuc, M.C.: In vitro activity of the new water-dispersible Fe3O4 @usnic acid nanostructure against planktonic and sessile bacterial cells. J. Nanopart. Res. 15, 1766 (2013). doi: 10.1007/s11051-013-1766-3 CrossRefGoogle Scholar
  16. 16.
    Tempelaars, M.H., Rodrigues, S., Abee, T.: Comparative analysis of antimicrobial activities of valinomycin and cereulide, the Bacillus cereus emetic toxin. Appl Environ. Microbiol. 77(8), 2755–2762 (2011). doi: 10.1128/AEM.02671-10 CrossRefGoogle Scholar
  17. 17.
    Raymond, K.N.: Recognition and transport of natural and synthetic siderophores by microbes. Pure Appl. Chem. 66(4), 773–781 (1994). doi: 10.1351/pac199466040773 CrossRefGoogle Scholar
  18. 18.
    Periasamy, S., Joo, H.S., Duong, A.C., Bach, T.H.L., Tan, V.Y., Chatterjee, S.S., Cheung, G.Y., Otto, M.: How Staphylococcus aureus biofilms develop their characteristic structure. Proc. Natl. Acad. Sci. 109(4), 1281–1286 (2012). doi: 10.1073/pnas.1115006109 CrossRefGoogle Scholar
  19. 19.
    Hasanova, U.A., Ramazanov, M.A., Maharramov, A.M., Eyvazova, Q.M., Agamaliyev, Z.A., Parfyonova, Y.V., Hajiyeva, S.F., Hajiyeva, F.V., Veliyeva, S.B.: Nano-coupling of cephalosporin antibiotic with fe3o4 nanoparticles: trojan horse approach in antimicrobial chemotherapy of infections caused by Klebsiella spp.. J. Biomater. Nanobiotechnol. 6, 225–235 (2015). doi: 10.4236/jbnb.2015.63021 CrossRefGoogle Scholar
  20. 20.
    Hasanova, U., Ramazanov, M., Maharramov, A., Gakhramanova, Z., Hajiyeva, S., Eyvazova, Q., Vezirova, L., Hajiyevaa, F., Hasanova, M., Guliyeva, N.: Synthesis of macrocycle (MC)—mimics the properties of natural siderophores and preparation the nanostructures on the basis of MC and magnetite nanoparticles. CEt chem. Eng. Trans. 47, 109–114 (2016). doi: 10.3303/CET1647019 Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Ulviyya Alimammad Hasanova
    • 1
  • Mahammadali Ahmad Ramazanov
    • 1
  • Abel Mammadali Maharramov
    • 1
  • Zarema Gakhramanova
    • 2
  • Sarvinaz Faiq Hajiyeva
    • 1
  • Leyla Vezirova
    • 2
  • Goncha Malik Eyvazova
    • 1
  • Flora Vidadi Hajiyeva
    • 1
  • Parvana Huseynova
    • 2
  • Zohrab Agamaliyev
    • 1
  1. 1.Nano Research LaboratoryBaku State UniversityBakuAzerbaijan
  2. 2.RI Geotechnological problems of gas oil and chemistryAzerbaijan State University of Oil and IndustryBakuAzerbaijan

Personalised recommendations