Advertisement

Equilibrium study on enantioselective distribution of amlodipine besilate enantiomers in a biphasic recognition chiral extraction system

  • Panliang Zhang
  • Genlin Sun
  • Yunren Qiu
  • Kewen Tang
  • Congshan Zhou
  • Changan Yang
Original Article

Abstract

The objective of this paper is to present the enantioselective distribution of amlodipine besilate enantiomers (ADB) in a biphasic recognition chiral extraction (BRCE) system. In the BRCE system, hydrophobic tartrate was added in organic phase and hydrophilic β-cyclodextrins in aqueous phase. Tartrate and β-cyclodextrins preferentially recognize (−)-ADB and (+)-ADB, respectively. Impacts of the type and concentration of chiral selectors, the pH value of the aqueous phase solution as well as temperature on the separation efficiency were investigated. Sulfobutyl ether-β-cyclodextrin (SBE-β-CD) and d-isobutyl tartrate (d-IBTA) were found to be the most suitable chiral selectors. By substituting the monophasic recognition chiral extraction (MRCE, with chiral selector in only one phase) system with BRCE system, the distribution ratios of the ADB enantiomers are remarkably increased with a little increase of enantioselectivity. The optimized conditions that are 5 °C of temperature, 7.2 of pH value, 0.05 mol/L of SBE-β-CD as well as 0.1 mol/L of d-IBTA are identified. The experimental results demonstrated that BRCE with strong chiral separation ability possesses good prospect in separation of enantiomers.

Keywords

Chiral separation Biphasic recognition Chiral extraction Chiral selector Amlodipine besilate 

Abbreviations

BRCE

Biphasic recognition chiral extraction

MRCE

Monophasic recognition chiral extraction

D

Distribution ratio, org/aq concentration

P

Distribution ratios of enantiomers with no chiral selectors

α

Enantioselectivity

ADB

Amlodipine

d

Selector of d-tartaric acid derivative

β-CD

β-cyclodextrin

Notes

Acknowledgments

This work was supported by the National Science Foundation of China (No. 21501057), the planned Science and Technology project of Hunan Province, China (No. 2013SK3166), and Aid program for Science, construct program of the key discipline in Hunan province, and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province.

References

  1. 1.
    De Camp, W.H.: The FDA perspective on the development of stereoisomers. Chirality 1, 2–6 (1989)CrossRefGoogle Scholar
  2. 2.
    Hutt, A.J.: Drug chirality: impact on pharmaceutical regulation. Chirality 3, 161–164 (1991)CrossRefGoogle Scholar
  3. 3.
    Gourlay, M.D., Kendrick, J., Leusen, F.J.J.: Predicting the spontaneous chiral resolution by crystallization of a pair of flexible nitroxide radicals. Cryst. Growth Des. 8, 2899–2905 (2008)CrossRefGoogle Scholar
  4. 4.
    Miyako, E., Maruyama, T., Kamiya, N., Goto, M.: Highly enantioselective separation using a supported liquid membrane encapsulating surfactant–enzyme complex. J. Am. Chem. Soc. 126, 8622–8623 (2008)CrossRefGoogle Scholar
  5. 5.
    Ward, T.J., Baker, B.A.: Chiral separations. Anal. Chem. 80, 4363–4372 (2008)CrossRefGoogle Scholar
  6. 6.
    Yu, T., Du, Y., Chen, B.: Evaluation of clarithromycin lactobionate as a novel chiral selector for enantiomeric separation of basic drugs in capillary electrophoresis. Electrophoresis 32, 1898–1905 (2011)CrossRefGoogle Scholar
  7. 7.
    Afonso, C.A.M., Crespo, J.G.: Recent advances in chiral resolution through membrane-based approaches. Angew. Chem. Int. Ed. 43, 5293–5295 (2004)CrossRefGoogle Scholar
  8. 8.
    Schuur, B., Verkuijl, B.J.V., Minnaard, A.J., de Vries, J.G., Heeres, H.J., Feringa, B.L.: Chiral separation by enantioselective liquid–liquid extraction. Org. Biomol. Chem. 9, 36–51 (2011)CrossRefGoogle Scholar
  9. 9.
    Lacour, J., Goujon-Ginglinger, C., Torche-Haldimann, S., Jodry, J.J.: Efficient enantioselective extraction of tris (diimine) ruthenium(II) complexes by chiral, lipophilic TRISPHAT anions. Angew. Chem. Int. Ed. 39, 3695–3697 (2000)CrossRefGoogle Scholar
  10. 10.
    Tang, K.W., Song, L.T., Liu, Y.B., Pan, Y., Jiang, X.Y.: Separation of flurbiprofen enantiomers by biphasic recognition chiral extraction. Chem. Eng. J. 158, 411–417 (2010)CrossRefGoogle Scholar
  11. 11.
    Tsukube, H., Shinoda, S., Uenishi, J., Kanatani, T., Itoh, H., Shiode, M., Iwachido, T., Yonemitsu, O.: Molecular recognition with lanthanide (III) tris (beta-diketonate) complexes: extraction transport, and chiral recognition of unprotected amino acids. Inorg. Chem. 37, 1585–1591 (1998)CrossRefGoogle Scholar
  12. 12.
    Zhang, Y., Hidajat, K., Ray, K.: Enantio-separation of racemic pindolol on 1-acid glycoprotein chiral stationary phase by SMB and varicol. Chem. Eng. Sci. 62, 1364–1375 (2007)CrossRefGoogle Scholar
  13. 13.
    Tan, B., Luo, G.S., Wang, J.D.: Extractive separation of amino acid enantiomers with co-extractants of tartaric acid derivative and aliquat-336. Sep. Purif. Technol. 53, 330–336 (2007)CrossRefGoogle Scholar
  14. 14.
    Ding, H.B., Carr, P.W., Cussler, E.L.: Racemic leucine separation by hollow-fiber extraction. AIChE J. 38, 1493–1498 (1992)CrossRefGoogle Scholar
  15. 15.
    Steensma, M., Kuipers, N.J., De Haan, A.B., Kwant, G.: Influence of process parameters on extraction equilibria for the chiral separation of amines and amino-alcohols with a chiral crown ether. J. Chem. Technol. Biotechnol. 21, 1032–1040 (2006)Google Scholar
  16. 16.
    Colera, M., Costero, A.M., Gaviñva, P., Gil, S.: Synthesis of chiral 18-crown-6 ethers containing lipophilic chains and their enantiomeric recognition of chiral ammonium picrates. Tetrahedron Asymmetry 16, 2673–2679 (2005)CrossRefGoogle Scholar
  17. 17.
    Snyder, S.E., Carey, J.R., Pirkle, W.H.: Biphasic enantioselective partitioning studies using small-molecule chiral selectors. Tetrahedron 61, 7562–7567 (2005)CrossRefGoogle Scholar
  18. 18.
    Kocabas, E., Karakucuk, A., Sirit, A., Yilmaz, M.: Synthesis of new chiral calix[4]arene diamide derivatives for liquid phase extraction of α-amina acid methylesters. Tetrahedron Asymmetry 17, 1514–1520 (2006)CrossRefGoogle Scholar
  19. 19.
    Keurentjes, J.T.F., Nabuurs, L.W.M., Vegter, E.A.: Liquid membrane technology for the separation of racemic mixtures. J. Membr. Sci. 113, 354–360 (1996)CrossRefGoogle Scholar
  20. 20.
    Franco, P., Blanc, J., Oberleitner, W.R., Maier, N.M., Lindner, W., Minguillón, C.: Enantiomer separation by countercurrent chromatography using cinchona alkaloid derivatives as chiral selectors. Anal. Chem. 74, 4175–4183 (2002)CrossRefGoogle Scholar
  21. 21.
    Ren, Z., Zeng, Y., Hua, Y., Cheng, Y., Guo, Z.: Enantioselective liquid–liquid extraction of racemic ibuprofen by L-tartaric acid derivatives. J. Chem. Eng. Data 59, 2517–2522 (2014)CrossRefGoogle Scholar
  22. 22.
    Duret, P., Foucault, A., Margraff, R.: Vancomycin as a chiral selector in centrifugal partition chromatogrphy. J. Liq. Chromatogr. 23, 295–312 (2000)CrossRefGoogle Scholar
  23. 23.
    Wei, Y., Du, S.J., Ito, Y.: Enantioseparation of lomefloxacin hydrochloride by high-speed counter-current chromatography using sulfated-β-cyclodextrin as a chiral selector. J. Chromatogr. B 878, 2937–2941 (2010)CrossRefGoogle Scholar
  24. 24.
    Koska, J., Haynes, C.A.: Modelling multiple chemical equilbria in chiral partition systems. Chem. Eng. Sci. 56, 5853–5864 (2001)CrossRefGoogle Scholar
  25. 25.
    Malta, L.F.B., Cordeiro, Y., Tinoco, L.W., Campos, C.C., Medeiros, M.E., Antunes, O.A.C.: Recognition mechanism of D- and L-tyryptophan enantiomers using 2-hydroxypropyl-α- or β-cyclodextrins as chiral selectors. Tetrahedron Asymmetry 19, 1182–1188 (2008)CrossRefGoogle Scholar
  26. 26.
    Liu, G., Wang, K., Zhang, M.: Comparative effect of amlodipine and levamlodipine on nocturnal hypertension in hypertensive patients. J. Med. Postgrad. 14, 496–499 (2001)Google Scholar
  27. 27.
    Ma, Y., Ito, Y., Foucault, A.: Resolution of gram quantities of racemates by high-speed counter-current chromatography. J. Chromatogr. A 704, 75–81 (1995)CrossRefGoogle Scholar
  28. 28.
    Kuhn, R., Erni, F., Bereuter, T., Haeusler, J.: Chiral recognition and enantiomeric resolution based on host-guest complexation with crown ethers in capillary zone electrophoresis. Anal. Chem. 64, 2815–2820 (1992)CrossRefGoogle Scholar
  29. 29.
    Cirilli, R., La Torre, F.: Stereoselective analysis of benazepril and its stereoisomers by reversed-phase high-performance liquid chromatography on a chiral AGP column. J. Chromatogr. A 818, 53–60 (1998)CrossRefGoogle Scholar
  30. 30.
    Heldin, E., Lindner, K.J., Pettersson, C., Lindner, W., Rao, R.: Tartaric acid derivatives as chiral selectors in liquid chromatography. Chromatographia 32, 407–416 (1992)CrossRefGoogle Scholar
  31. 31.
    Xie, J., Tan, Q., Yang, L., Lai, S., Tang, S., Cai, C., Chen, X.: A simple and rapid method for chiral separation of amlodipine using dual chiral mobile phase additives. Anal. Methods 6, 4408–4413 (2014)CrossRefGoogle Scholar
  32. 32.
    Taraszewska, J.: Complexes of β-cyclodextrin with chloronitrobenzenes and with solvents in water + organic solvent mixtures. J. Incl. Phenom. Mol. Recognit. Chem. 10, 69–78 (1991)CrossRefGoogle Scholar
  33. 33.
    O’Brien, T., Crocker, L., Thompson, R., Thompson, K., Tom, P.H., Conlon, D.A., Feibush, B., Moeder, C., Bicker, G., Grinberg, N.: Mechanistic aspects of chiral discrimination on modified cellulose. Anal. Chem. 69, 1999–2007 (1997)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringCentral South UniversityChangshaChina
  2. 2.Department of Chemistry and Chemical EngineeringHunan Institute of Science and TechnologyYueyangChina

Personalised recommendations