Advertisement

Photostability of water-soluble inclusion complexes of UV-filters and curcumin with gamma-cyclodextrin polymer

  • Thitinun Karpkird
  • Raweewan Khunsakorn
  • Chaiwat Noptheeranuphap
  • Junya Jettanasen
Original Article

Abstract

The water-soluble inclusion complexes of curcumin, 2-ethylhexyl-4-methoxycinnamate (EHMC) and 4-tert-butyl-4′-methoxydibenzoylmethane (DBM) with gamma-cyclodextrin polymer (pyCD) were successfully prepared and characterized by 1H-NMR, IR and UV–Vis spectroscopies. The water-solubility of EHMC–pyCD, DBM–pyCD and curcumin–pyCD was dramatically increased because of the water-soluble pyCD. The mole ratio of gamma-CD in pyCD to EHMC, DBM and curcumin were carried out as 1:1. The photostability of all inclusion complexes was investigated in water and ethylene glycol and compared with free active ingredients. It was found that the photostability of EHMC–pyCD was greatly enhanced whereas those of DBM–pyCD and curcumin–pyCD in water were decreased due to the acceleration of the photodegradation reaction inside the gamma-CD cavity. These results were able to be used as a solubilizer for cosmetic and also pharmaceutical applications.

Keywords

UV-filter Curcumin Gamma-cyclodextrin Photostability Inclusion complex 

Notes

Acknowledgments

The authors acknowledged the financial support from Kasetsart University Research and Development Institute (KURDI-10.57) and the Faculty of Science, Kasetsart University (URMF).

Supplementary material

10847_2015_589_MOESM1_ESM.docx (584 kb)
Supplementary material 1 (DOCX 584 kb)

References

  1. 1.
    Agar, N.S., Halliday, G.M., Barnetson, R.S., Ananthaswamy, H.N., Wheeler, M., Jones, A.M.: The basal layer in human squamous tumors harbors more UVA than UVB fingerprint mutations: a role for UVA in human skin carcinogenesis. Proc. Natl Acad. Sci. U. S. A. 101, 4954–4959 (2004)CrossRefGoogle Scholar
  2. 2.
    Matsumura, Y., Ananthaswamy, H.N.: Toxic effects of ultraviolet radiation on the skin. Toxicol. Appl. Pharmacol. 195, 298–308 (2004)CrossRefGoogle Scholar
  3. 3.
    Kockler, J., Oelgemöller, M., Robertson, S., Glass, B.D.: Photostability of sunscreens.  J. Photochem. Photobiol. C Photochem. Rev. 13, 91–110 (2012)CrossRefGoogle Scholar
  4. 4.
    Pattanaargson, S., Munhapol, T., Hirunsuphachot, P., Limpong, P.: Photoisomerization of octyl methoxycinnamate.  J. Photochem. Photobiol. A Chem. 161, 269–274 (2004)CrossRefGoogle Scholar
  5. 5.
    Mturi, G.J., Martincigh, B.S.: Photostability of the sunscreening agent 4-tert-butyl-4′-methoxydibenzoylmethane (avobenzone) in solvents of different polarity and proticity. J. Photochem. Photobiol. A Chem. 200, 410–420 (2008)CrossRefGoogle Scholar
  6. 6.
    Kockler, J., Motti, C., Robertson, S., Oelgemöller, M., Glass, B.D.: HPLC Method for the Simultaneous Determination of the UV-Filters Butyl Methoxy Dibenzoylmethane and Octocrylene in the Presence of Their Photodegradants. Chromatographia. 76, 1721–1727 (2013)CrossRefGoogle Scholar
  7. 7.
    Wang, Y.J., Pan, M.H., Cheng, A.L., Lin, L.I., Ho, Y.S., Hsieh, C.Y., Lin, J.K.: Stability of curcumin in buffer solutions and characterization of its degradation products. J. Pharm. Biomed. Anal. 15, 1867-1876 (1997)CrossRefGoogle Scholar
  8. 8.
    Jahed, V., Zarrabi, A., Bordbar, A., Hafezi, M.S.: NMR (1H, ROESY) spectroscopic and molecular modelling investigations of supramolecular complex of β-cyclodextrin and curcumin. Food Chem. 165, 241–246 (2014)CrossRefGoogle Scholar
  9. 9.
    Ammala, A.: Biodegradable polymers as encapsulation materials for cosmetics and personal care markets, Int. J. Cosmet. Sci. 35, 113–124 (2013)CrossRefGoogle Scholar
  10. 10.
    Yallapu, M.M., Jaggi, M., Chauhan, S.C.: β-Cyclodextrin-curcumin self-assembly enhances curcumin delivery in prostate cancer cells. Colloids Surfaces B Biointerfaces. 79, 113–125 (2010)CrossRefGoogle Scholar
  11. 11.
    Kurkov, S. V., Loftsson, T.: Cyclodextrins. Int. J. Pharm. 453, 167–180 (2013)CrossRefGoogle Scholar
  12. 12.
    Anand, R., Manoli, F., Manet, I., Daoud-Mahammed, S., Agostoni, V., Gref, R., Monti, S.: β-Cyclodextrin polymer nanoparticles as carriers for doxorubicin and artemisinin: a spectroscopic and photophysical study. Photochem. Photobiol. Sci. 11, 1285-1292 (2012)CrossRefGoogle Scholar
  13. 13.
    Scalia, S., Simeoni, S., Barbieri, A., Sostero, S.: Influence of hydroxypropyl-β-cyclodextrin on photo-induced free radical production by the sunscreen agent, butyl-methoxydibenzoylmethane. J. Pharm. Pharmacol. 54,1553–1558 (2002)CrossRefGoogle Scholar
  14. 14.
    Suwannateep, N., Banlunara, W., Wanichwecharungruang, S.P., Chiablaem, K., Lirdprapamongkol, K., Svasti, J.: Mucoadhesive curcumin nanospheres: Biological activity, adhesion to stomach mucosa and release of curcumin into the circulation. J. Control. Release. 151, 176–182 (2011)CrossRefGoogle Scholar
  15. 15.
    Scalia, S., Casolari, A., Iaconinoto, A., Simeoni, S.: Comparative studies of the influence of cyclodextrins on the stability of the sunscreen agent, 2-ethylhexyl-p-methoxycinnamate.  J. Pharm. Biomed. Anal. 30, 1181–1189 (2002)CrossRefGoogle Scholar
  16. 16.
    Liu, Y., Chen, G.-S., Chen, Y., Ding, F., Chen, J.: Cyclodextrins as carriers for cinchona alkaloids: a pH-responsive selective binding system. Org. Biomol. Chem. 3, 2519–23 (2005)CrossRefGoogle Scholar
  17. 17.
    Ciobanu, a., Mallard, I., Landy, D., Brabie, G., Nistor, D.: Fourmentin, S. Fourmentin, Inclusion interactions of cyclodextrins and crosslinked cyclodextrin polymers with linalool and camphor in Lavandula angustifolia essential oil. Carbohydr. Polym. 87, 1963–1970 (2012)CrossRefGoogle Scholar
  18. 18.
    Renard, E., Deratani, a., Volet, G., Sebille, B.: Preparation and characterization of water soluble high molecular weight β-cyclodextrin-epichlorohydrin polymers. Eur. Polym. J. 33, 49–57 (1997)CrossRefGoogle Scholar
  19. 19.
    Zhang, W., Gong, X., Cai, Y., Zhang, C., Yu, X., Fan, J., Diao, G.: Investigation of water-soluble inclusion complex of hypericin with β-cyclodextrin polymer, Carbohydr. Polym. 95, 366–370 (2013)CrossRefGoogle Scholar
  20. 20.
    Wintgens, V., Amiel, C.: Water-soluble γ-cyclodextrin polymers with high molecular weight and their complex forming properties. Eur. Polym. J. 46, 1915–1922 (2010)CrossRefGoogle Scholar
  21. 21.
    Higuchi, T., Connors, K.A.: Phase-solubility techniques. Adv. Anal. Chem. Instrum. 4, 117–212 (1965)Google Scholar
  22. 22.
    Patro, N.M., Sultana, A., Terao, K., Nakata, D., Jo, A., Urano, A., Ishida, Y., Gorantla, R.N., Pandit, V., Devi, K., Rohit, S., Grewal, B.K., Sophia, E.M., Suresh, A., Ekbote, V.K., Suresh, S.: Comparison and correlation of in vitro, in vivo and in silico evaluations of alpha, beta and gamma cyclodextrin complexes of curcumin. J. Incl. Phenom. Macrocycl. Chem. 78, 471–483 (2014)CrossRefGoogle Scholar
  23. 23.
    Fenyvesi, É., Otta, K., Kolbe, I., Novák, C., Szejtli, J.: Cyclodextrin Complexes of UV Filters.  J. Incl. Phenom. Macrocycl. Chem. 48, 117–123 (2004)CrossRefGoogle Scholar
  24. 24.
    Tønnesen, H.H., Másson, M., Loftsson, T.: Studies of curcumin and curcuminoids. XXVII. Cyclodextrin complexation: solubility, chemical and photochemical stability. Int. J. Pharm. 244, 127–135 (2002)CrossRefGoogle Scholar
  25. 25.
    Yamaji, M., Kida, M.: Photothermal tautomerization of a UV sunscreen (4-tert-butyl-4′-methoxydibenzoylmethane) in acetonitrile studied by steady-state and laser flash photolysis. J. Phys. Chem. A 117, 1946–1951 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Thitinun Karpkird
    • 1
  • Raweewan Khunsakorn
    • 1
  • Chaiwat Noptheeranuphap
    • 1
  • Junya Jettanasen
    • 1
  1. 1.Department of Chemistry, Faculty of ScienceKasetsart UniversityBangkokThailand

Personalised recommendations