Skip to main content
Log in

Theoretical investigation on insulin dimer-β-cyclodextrin interactions using docking and molecular dynamics simulation

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

In our study, molecular docking and molecular dynamics (MD) simulations were performed in order to explore the interactions between human insulin and β-cyclodextrin (β-CD). Molecular docking study was performed using the Autodock v4.2 program to determine the number of β-CD molecules that adhere to the binding sites of insulin. A random structure docking approach using an initial ratio of 1:1 insulin-β-CD was conducted and from these, additional β-CDs were added. Molecular docking results revealed that a maximum of four β-CDs are able to bind to the insulin structure with the 1:3 insulin-β-CD ratio producing the lowest binding free energy. The docked conformations showed that hydrophobic interactions played a crucial role in insulin-β-CD conformational stability in addition to the formation of hydrogen bonds. A 50 ns MD simulation was further conducted using an NPT ensemble to verify the results obtained by molecular docking. The analysis of the MD simulation results of the 1:3 insulin-β-CD formation system conclude that a good interaction exists between insulin and β-CDs and the RMSD value obtained was 4.00 ± 0.50 Å. The RMSF profiles of insulin in the 1:3 insulin-β-CD formation also show reduced amino acid residues flexibility as compared to the free insulin system. The theoretical results indicated the presence of significant interactions between insulin and β-CD which could provide interesting insights into an insulin formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Williams, R., Gaal, L.V., Lucioni, C.: Assessing the impact of complications on the costs of Type II diabetes. Diabetologia 45, 13–17 (2002)

    Article  Google Scholar 

  2. Ramachandran, A., Snehalatha, C., Shetty, A.S., Nanditha, A.: Trends in prevalence of diabetes in Asian countries. World J. Diabetes 3, 110–117 (2012)

    Article  Google Scholar 

  3. Lu, S.Y., Jiang, Y.J., Jing, L.V., Wua, T.X., Yua, Q.S., Zhu, W.L.: Molecular docking and molecular dynamics simulation studies of GPR40 receptor-agonist interactions. J. Mol. Graph. Model. 28, 766–774 (2010)

    Article  CAS  Google Scholar 

  4. Zhang, X., Qi, J., Lu, Y., He, W., Li, X., Wu, W.: Biotinylated liposomes as potential carriers for the oral delivery of insulin. Nanomedicine 10, 167–176 (2014)

    Article  CAS  Google Scholar 

  5. Ullmann’s Encyclopedia of Industrial Chemistry 6th edn. Wiley-VCH, Chichester (2002)

  6. Olsen, H.B., Ludvigsen, S., Kaarsholm, N.C.: Solution structure of an engineered insulin monomer at neutral pH. Biochemistry 35, 8836–8845 (1996)

    Article  CAS  Google Scholar 

  7. Loftsson, T., Jarho, P., Másson, M., Järvinen, T.: Cyclodextrins in drug delivery. Expert. Opin. Drug Deliv. 2, 335–351 (2005)

    Article  CAS  Google Scholar 

  8. Dodson, G., Steiner, D.: The role of assembly in insulin’s biosynthesis. Curr. Opin. Struck. Biol. 8, 189–194 (1998)

    Article  CAS  Google Scholar 

  9. Dunn, M.F.: Zinc–ligand interactions modulate assembly and stability of the insulin hexamer—a review. Biometals 18, 295–303 (2005)

    Article  CAS  Google Scholar 

  10. Szejtli, J.: Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 98, 1743–1753 (1998)

    Article  CAS  Google Scholar 

  11. Xiong, X.Y., Li, Q.H., Li, Y.P., Guo, L., Li, Z.L., Gong, Y.C.: Pluronic P85/poly(lactic acid) vesicles as novel carrier for oral insulin delivery. Colloids Surf. B 111, 282–288 (2013)

    Article  CAS  Google Scholar 

  12. Elsayed, A.M.: Oral Delivery of Insulin: Novel Approaches, pp. 281–314. InTechOpen, Taif (2012)

    Google Scholar 

  13. Timmy, S.A., Victor, S.P., Sharma, C.P., Kumari, V.J.: Beta cyclodextrin complexed insulin loaded alginate microspheres—oral delivery system. Trends Biomater. Artif. Organs. 15, 48–53 (2002)

    Google Scholar 

  14. Ashada, H., Douen, T., Mizokoshi, Y., Fujita, T., Murakami, M., Yamamoto, A., Muranishi, S.: Absorption characteristics of chemically modified insulin derivatives with various fatty acids in the small and large intestine. J. Pharm. Sci. 84, 682–687 (1995)

    Article  Google Scholar 

  15. Liu, H., Tang, R., Pan, W.S., Zhang, Y., Liu, H.: Potential utility of various protease inhibitors for improving the intestinal absorption of insulin in rats. J. Pharm. Pharmacol. 55, 1523–1529 (2003)

    Article  CAS  Google Scholar 

  16. Salamat-Miller, N., Johnston, T.P.: Current strategies used to enhance the paracellular transport of therapeutic polypeptides across the intestinal epithelium. Int. J. Pharm. 294, 201–216 (2005)

    Article  CAS  Google Scholar 

  17. Nakamura, K., Murray, R.J., Joseph, J.I., Peppas, N.A., Morishita, M., Lowman, A.M.: Oral insulin delivery using P(MAA-g-EG) hydrogels: effects of network morphology on insulin delivery characteristics. J. Cont. Release. 95, 589–599 (2014)

    Article  Google Scholar 

  18. Choudhari, K.B., Labhasetwar, V.: Liposomes as a carrier for oral administration of insulin: effect of formulation factors. J. Microencapsul. 11, 319–325 (1994)

    Article  CAS  Google Scholar 

  19. Al-Achi, A., Greenwood, R.: Erythrocytes as oral delivery systems for human insulin. Drug Dev. Ind. Pharm. 24, 67–72 (1998)

    Article  CAS  Google Scholar 

  20. Damge, C., Vranckx, H., Balschmidt, P., Couvreur, P.: Poly (alkyl cyanoacrylate) nanospheres for oral administration of insulin. J. Pharm. Sci. 86, 1403–1409 (1997)

    Article  CAS  Google Scholar 

  21. Chung, H., Kim, J., Um, J.Y., Kwon, I.C., Jeong, S.Y.: Self-assembled nanocubicle as a carrier for peroral insulin delivery. Diabetologia 45, 448–451 (2004)

    Article  Google Scholar 

  22. Hua, Q., Weiss, M.A.: Comparative 2D NMR studies of human insulin and des-pentapeptide insulin: sequential resonance assignment and implications for protein dynamics and receptor recognition. Biochemistry 30, 5505–5515 (1991)

    Article  CAS  Google Scholar 

  23. Abbaspour, A., Noori, A.: A cyclodextrin host-guest recognition approach to an electrochemical sensor for simultaneous quantification of serotonin and dopamine. Biosens. Bioelectron. 26, 4674–4680 (2011)

    Article  CAS  Google Scholar 

  24. Franco, C., Schwingel, L., Lula, L., Sinisterra, R.D., Koeester, L., Bassani, V.L.: Studies on coumestro/β-cyclodextrin association : Inclusion complex characterization. Int. J. Pharm. 369, 5–11 (2009)

    Article  CAS  Google Scholar 

  25. McEvoy, K., McMahon, H.E.M.: Antiprion action of new cyclodextrin analogues. Biochim. Biophys. Acta 1790, 1382–1386 (2009)

    Article  CAS  Google Scholar 

  26. Aachmann, F.L., Otzen, D.E., Larsen, K.L., Wimmer, R.: Structural background of cyclodextrin-protein interactions. Prot. Eng. 16, 905–912 (2003)

    Article  CAS  Google Scholar 

  27. Sajeesh, S., Sharma, C.P.: Cyclodextrin-insulin complex encapsulated polymethacrylic acid based nanoparticles for oral insulin delivery. Int. J. Pharm. 325, 147–154 (2006)

    Article  CAS  Google Scholar 

  28. Krauland, A.H., Alonso, M.J.: Chitosan/cyclodextrin nanoparticles as macromolecular drug delivery system. Int. J. Pharm. 340, 134–142 (2007)

    Article  CAS  Google Scholar 

  29. Yoshida, A., Yamamoto, M., Irie, T., Hirayama, F., Uekama, K.: Some pharmaceutical properties of 3-hydroxypropyl- and 2,3-dihydroxypropyl-β-cyclodextrins and their solubilizing and stabilizing abilities. Chem. Pharm. Bull. 37, 1059–1063 (1989)

    Article  CAS  Google Scholar 

  30. WHO Toxicological evaluation of certain food additives and contaminants. β-Cyclodextrin, vol. 32, pp 173–193. World Health Organization, Geneva. WHO Food Additives Series (1993)

  31. Fromming, K.H., Szejtli, J.: Pharmacokinetics and toxicology of cyclodextrins. In: Fromming, K.H., Szejtli, J. (eds.) Cyclodextrins in Pharmacy, pp. 33–45. Springer-Science+Bussines Media, London (1994)

    Chapter  Google Scholar 

  32. Bellringer, M.E., Smith, T.G., Read, R., Gopinath, C., Olivier, P.: β-Cyclodextrin: 52 week toxicity studies in the rat and dog. Food Chem. Toxicol. 33, 367–376 (1995)

    Article  CAS  Google Scholar 

  33. Hadaruga, D.I., Bals, D., Hadaruga, N.G.: Insulin-containing amino acids and oligopeptides/β-cyclodextrin supramolecular systems: molecular modeling and docking experiments. Chem. Bull. 54, 108–113 (2009)

    Google Scholar 

  34. Zoete, V., Meuwly, M., Karplus, M.: Investigation of glucose binding sites on insulin. Proteins 55, 568–581 (2004)

    Article  CAS  Google Scholar 

  35. Berhanu, W.M., Masunov, A.E.: Controlling the aggregation and rate of release in order to improve insulin formulation : molecular dynamics study of full-length insulin amyloid oligomer models. J. Mol. Model. 18, 1129–1142 (2012)

    Article  CAS  Google Scholar 

  36. Alexander, J.M., Clark, J.L., Brett, T.J., Stezowski, J.J.: β-cyclodextrin N-acetyl-l-phenylalanine clathrate dodecahydrate. Proc. Nat. Acad. Sci. 99, 5115 (2002)

    Article  CAS  Google Scholar 

  37. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery Jr, J.A., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Ba-rone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Pet-ersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gom-perts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dap-prich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., Pople, J.A.: Gaussian 03, Revision D. 01. Gaussian, Pittsburgh (2004)

    Google Scholar 

  38. Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S., Olson, A.J.: Autodock4 and AutoDockTools4: automated docking with selective receptor flexiblity. J. Comput. Chem. 16, 2785–2791 (2009)

    Article  Google Scholar 

  39. Morris, G.M., Goodsell, D.S., Halliday, R.S., Huey, R., Hart, W.E., Belew, R.K., Olson, A.J.: Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 19, 1639–1662 (1998)

    Article  CAS  Google Scholar 

  40. Laskowski, R.A., Swindells, M.B.: LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inf. Model. 51, 2778–2786 (2011)

    Article  CAS  Google Scholar 

  41. van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A.E., Berendsen, H.J.C.: GROMACS: fast, flexible, and free. J. Comput. Chem. 26, 1701–1718 (2005)

    Article  Google Scholar 

  42. Hess, B., Kutzner, C., van der Spoel, D., Lindahl, E.: GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 4, 435–447 (2008)

    Article  CAS  Google Scholar 

  43. Stocker, U., van Gunsteren, W.F.: Molecular dynamics simulation of hen egg white lysozyme: a test of the GROMOS96 force field against nuclear magnetic resonance data. Proteins Struct. Funct. Bioinform. 40, 145–153 (2000)

    Article  CAS  Google Scholar 

  44. Rivail, L., Chipot, C., Maigret, B., Bestel, I., Sicsic, S., Tarek, M.: Large-scale molecular dynamics of a G protein-coupled receptor, the human 5-HT4 serotonin receptor, in a lipid bilayer. J. Mol. Struct. 817, 19–26 (2007)

    Article  CAS  Google Scholar 

  45. Abraham, M.J., Gready, J.E.: Optimization of parameters for molecular dynamics simulation using smooth particle-mesh Ewald in GROMACS 4.5. J. Comput. Chem. 32, 2031–2040 (2011)

    Article  CAS  Google Scholar 

  46. Hess, B., Bekker, H., Berendsen, H.J.C., Fraaije, J.G.E., Fraaije, J.G.E.M.: LINCS: a linear constraint solver for molecular simulations. J. Comput. Chem. 18, 1463–1472 (1997)

    Article  CAS  Google Scholar 

  47. Chandler, D.: Review article interfaces and the driving force of hydrophobic assembly. Nature 437, 640–647 (2005)

    Article  CAS  Google Scholar 

  48. Cooper, A.: Effect of cyclodextrins on the thermal stability of globular proteins. J. Am. Chem. Soc. 114, 9208–9209 (1992)

    Article  CAS  Google Scholar 

  49. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E.: The protein data bank. Nucleic Acids Res. 28, 235–242 (2000)

    Article  CAS  Google Scholar 

  50. Mikami, B., Sato, M., Shibata, T., Hirose, M., Aibara, S., Katsube, Y., Morita, Y.: Three-dimensional structure of soybean beta-amylase determined at 3.0 Å resolution: preliminary chain tracing of the complex with alpha-cyclodextrin. J. Biochem. 112, 541–546 (1992)

    CAS  Google Scholar 

  51. Yokota, T., Tonozuka, T., Shimura, Y., Ichiwa, K., Kamitori, S., Sakano, Y.: Structures of Thermoactinomyces vulgaris R-47 alpha-amylase II complexed with substrate analogues. Biosci. Biotechnol. Biochem. 65, 619–626 (2001)

    Article  CAS  Google Scholar 

  52. Pullen, R.A., Lindsay, D.G., Wood, S.P., Tickle, I.J., Blundell, T.L., Wollmer, A., Krail, G., Brandenburg, D., Zahn, H., Gliemann, J., Gammeltoft, S.: Receptor-binding region of insulin. Nature 259, 369–373 (1976)

    Article  CAS  Google Scholar 

  53. Pittman, I.T., Tager, H.S.: A spectroscopic investigation of the conformational dynamics of insulin in solution. Biochemistry 34, 10578–10590 (1995)

    Article  CAS  Google Scholar 

  54. Hua, Q., Weiss, M.A.: Mechanism of insulin fibrillation. The structure of insulin under amyloidogenic conditions resembles a protein-folding. J. Biol. Chem. 279, 21449–21460 (2004)

    Article  CAS  Google Scholar 

  55. Zhang, R., Wang, Z., Ling, B., Liu, Y., Liu, C.: Docking and molecular dynamics studies on the interaction of four imidazoline derivatives with potassium ion channel (Kir6.2). Mol. Simul. 36, 166–174 (2010)

    Article  Google Scholar 

  56. Falconi, M., Cambria, M.T., Cambria, A., Desideri, A.: Structure and stability of the insulin dimer investigated by molecular dynamics simulation. J. Biomol. Struct. Dyn. 18, 761–772 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The study was financially supported by the funding from Universiti Sains Malaysia through the Research University Grant (Grant No. 1001/PKIMIA/815099). The authors gratefully acknowledge the technical assistance from the staff of the Department of Chemistry, Faculty of Science, Universiti Putra Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rohana Adnan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muhammad, E.F., Adnan, R., Latif, M.A.M. et al. Theoretical investigation on insulin dimer-β-cyclodextrin interactions using docking and molecular dynamics simulation. J Incl Phenom Macrocycl Chem 84, 1–10 (2016). https://doi.org/10.1007/s10847-015-0576-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-015-0576-x

Keywords

Navigation