99mTc labeled macrocyclic aza-oxa and aza-thia probes: synthesis, characterization and in vitro & in vivo biological studies

  • Neelam Yadav
  • Krishna Chuttani
  • Anil K. Mishra
  • Bachcha Singh
Original Article


Macrocyclic chelating agents 1-oxa-4,7,10-triazacyclopentadecane-3,11-dione (OTDD) and 1-thia-4,7, 10-triazacyclododecane-3,11-dione (TTDD) have been synthesized and labeled with radionuclide (99mTc), with radiolabeling efficiency 97.6 and 98.4 % respectively. The radiochemical purity of labeled complex (99mTc-OTDD and 99mTc-TTDD) was determined 97.5 and 98.1 %, respectively. The in vitro stability of the labeled chelates in human serum exhibited only <8 % dissociation upto 24 h. The in vivo distribution pattern of the labeled chelators in BALB/c mice suggested that major route of excretion in 99mTc-TTDD is hepatobilliary and minor is renal, while in case of 99mTc-OTDD hepatobilliary as well as renal both comparable. The in vivo blood kinetic studies of radio-complexes of 99mTc-OTDD and 99mTc-TTDD showed 99.26 and 99.4 % blood clearance over 24 h post injection. The biological half-life of 99mTc-OTDD and 99mTc-TTDD with t1/2(F) 1 h 10 min, t1/2(S) 18 h 50 min and t1/2(F) 1 h 42 min, t1/2(S) 18 h 20 min respectively. In vitro cytotoxicity study of OTDD and TTDD did not exhibit any significant antiproliferative property against cancer cells of human glioblastoma U-87, U373 and cervical SW756, HeLa cell lines.


Cancer Macrocyclic chelating agents 99mTc DFT Radiolabeling 



We are grateful to the Head, Department of Chemistry (Center of Advanced Study), Faculty of Science, Banaras Hindu University, Varanasi, for extending laboratory facilities. N.Y. gratefully acknowledges UGC, New Delhi for awarding JRF UGC-BSR fellowship.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.


  1. 1.
    Nolting, D.D., Nickels, M.L., Guo, N., Wellington, P.: Molecular imaging probe development: a chemistry perspective. Am. J. Nucl. Med. Mol. Imaging 2(3), 273–306 (2012)Google Scholar
  2. 2.
    Morrissey, S.: Targeting cancer. Chem. Eng. News Archive 82(38), 13 (2004)CrossRefGoogle Scholar
  3. 3.
    Danhier, F., Breton, A.L., Preat, V.: RGD-based strategies to target alpha(v) Beta(3) integrin in cancer therapy and diagnosis. Mol. Pharm. 9, 2961–2973 (2012)CrossRefGoogle Scholar
  4. 4.
    Wadas, T.J., Wong, E.H., Weisman, G.R., Anderson, C.J.: Coordinating radiometals of copper, gallium, indium, yttrium, and zirconium for PET and SPECT imaging of disease. Chem. Rev. 110(5), 2858–2902 (2010)CrossRefGoogle Scholar
  5. 5.
    Liu, S.: The role of coordination chemistry in the development of target-specific radiopharmaceuticals. Chem. Soc. Rev. 33, 445–461 (2004)CrossRefGoogle Scholar
  6. 6.
    Caravan, P., Ellison, J.J., McMurry, T.J., Lauffer, R.B.: Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem. Rev. 99(9), 2293–2352 (1999)CrossRefGoogle Scholar
  7. 7.
    Hancock, R.D.: The basis of selectivity for metal ions in open-chain ligands and macrocycles. J. Chem. Educ. 69, 615–621 (1992)CrossRefGoogle Scholar
  8. 8.
    Price, E.W., Orvig, C.: Matching chelators to radiometals for radiopharmaceuticals. Chem. Soc. Rev. 43(1), 260–290 (2014)CrossRefGoogle Scholar
  9. 9.
  10. 10.
    Saha, G.B.: Fundamentals of Nuclear Pharmacy, 4th edn, pp. 87–89. Springer-Verleg, New York (1998)CrossRefGoogle Scholar
  11. 11.
    Alberto, R., Braband, H.: Comprehensive Inorganic Chemistry II, pp. 785–817. Elsevier, Oxford (2013)CrossRefGoogle Scholar
  12. 12.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A., Vreven Jr, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Li, M., Klene, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J., Ayala, W.P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., Pople, J.A.: Gaussian 03, Revision C.02. Gaussian Inc, Wallingford, CT (2004)Google Scholar
  13. 13.
    Hohenberg, P., Kohn, W.: In homogeneous electron gas. Phys. Rev. B. 136, 864–871 (1964)CrossRefGoogle Scholar
  14. 14.
    Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. A 140, 1133–1138 (1965)CrossRefGoogle Scholar
  15. 15.
    Becke, A.D.: Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38, 3098–3100 (1988)CrossRefGoogle Scholar
  16. 16.
    Becke, A.D.: Density-functional thermochemistry. I. The effect of the exchange-only gradient correction. J. Chem. Phys. 96, 2155–2160 (1992)CrossRefGoogle Scholar
  17. 17.
    Becke, A.D.: Density-functional thermochemistry. II. the effect of the Perdew-Wang generalized-gradient correlation correction. J. Chem. Phys. 97, 9173–9177 (1992)CrossRefGoogle Scholar
  18. 18.
    Becke, A.D.: Density-functional thermochemistry III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993)CrossRefGoogle Scholar
  19. 19.
    Lee, C., Yang, W., Parr, R.G.: Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988)CrossRefGoogle Scholar
  20. 20.
    Ditchfield, R., Hehre, W.J., Pople, J.A.: Self-consistent molecular-orbital methods. IX. An extended gaussian-type basis for molecular-orbital studies of organic molecules. J. Chem. Phys. 54, 724–728 (1971)CrossRefGoogle Scholar
  21. 21.
    Hehre, W.J., Ditchfield, R., Pople, J.A.: Self? consistent molecular orbital methods. XII. Further extensions of gaussian type basis sets for use in molecular orbital studies of organic molecules. J. Chem. Phys. 56, 2257–2261 (1972)CrossRefGoogle Scholar
  22. 22.
    Dziembowska, T., Szafran, M., Jagodzinska, E., Natkaniec, I., Pawlukojc, A., Kwiatkowski, J.S., Baran, J.: DFT studies of the structure and vibrational spectra of 8-hydroxyquinoline N-oxide. J. Spectrochim. Acta Part A 59, 2175–2189 (2003)CrossRefGoogle Scholar
  23. 23.
    Vessally, Esmail: Samaneh fateh basharzad, maryam motallebzadeh and ladan edjlali, Heteroatom effects on the triafulvalene and heavier analogs, XC5H4 and XC5H3 (X = C, Si, Ge, N, P, and As): DFT calculations. J. Theor. Comput. Chem. 10, 769–788 (2011)CrossRefGoogle Scholar
  24. 24.
    Dennington II, R., Keith, T., Millam, J., Eppinnett, K., Hovell, W.L., Gilliland, R.: Gauss View 03. Semichem Inc, Shawnee Mission (2003)Google Scholar
  25. 25.
    Rodgers, Steven J., Ng, Chiu Yuen, Raymond, Kenneth N.: High-dilution synthesis of macrocyclic polycatecholates. J. Am. Chem. Soc. 107(13), 4094–4095 (1985)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Neelam Yadav
    • 1
  • Krishna Chuttani
    • 2
  • Anil K. Mishra
    • 2
  • Bachcha Singh
    • 1
  1. 1.Department of Chemistry (Centre of Advanced Study), Faculty of ScienceBanaras Hindu UniversityVaranasiIndia
  2. 2.Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied SciencesDefence Research and Development OrganizationDelhiIndia

Personalised recommendations