Calixarene-engineered surfaces and separation science

  • Orhan Gezici
  • Mevlüt Bayrakci
Review Article


After their discovery, calixarenes have attracted the attention of many researchers from various disciplines. This group of supramolecules has an increasing popularity and this is most probably related with the flexibility of calixarene chemistry. Owing to their multifunctional character and stability, calixarenes became important precursors in separation science to derive new-type of sorbents or stationary phases. Immobilization of calixarenes to a suitable solid support (e.g. silica, synthetic polymers, magnetite nanoparticles, etc.) is a very popular concept being used for this purpose, and various immobilization methodologies have been proposed in the literature. In the present work, some state-of-the-art researches and developments published in the past are reviewed in a collective manner, and thus fundamentals of calixarene-immobilization and the application of the obtained materials in sorption and high performance liquid chromatography are represented.


Adsorption Calixarene Chromatography Immobilization Supramolecules Purification 



Authors wish to thank Nigde University (Nigde, Turkey) and Karamanoglu Mehmetbey University (Karaman, Turkey) for the facilities provided.


  1. 1.
    Baeyer, A. Berlin, 5, 25 (1872)Google Scholar
  2. 2.
    Baekeland, L.H.: Method of making insoluble products of phenol and formaldehyde. US Patent Number(s) 942, 699 (1908)Google Scholar
  3. 3.
    Zinke, A., Ziegler, E.: Zur Kenntnis des Hartungs-prozesses von Phenol-Formaldehyd-Harzen, X. Mitteilung. Ber. Dtsch. Chem. Ges. 77(B), 264–272 (1944)CrossRefGoogle Scholar
  4. 4.
    Zinke, A., Kretz, R., Leggewie, E., Hössinger, K.: Zur Kenntnis des Härtungsprozesses von Phenol-Formaldehyd-Harzen. Monatsh. Chem. 83, 1213–1227 (1952)CrossRefGoogle Scholar
  5. 5.
    Gutsche, C.D., Dhawan, B., No, K.H., Muthukrishnan, R.: Calixarenes. 4. The synthesis, characterization, and properties of the calixarenes from para-tert-butylphenol. J. Am. Chem. Soc. 103(13), 3782–3792 (1981)CrossRefGoogle Scholar
  6. 6.
    Shinkai, S.: Calixarenes–the third generation of supramolecules. Tetrahedron 49(40), 8933–8968 (1993)CrossRefGoogle Scholar
  7. 7.
    Gutsche, C.D., Nam, K.C.: Calixarenes 22. Synthesis, properties, and metal complexation of aminocalixarenes. J. Am. Chem. Soc. 110(18), 6153–6162 (1988)CrossRefGoogle Scholar
  8. 8.
    Bayrakcı, M., Ertul, Ş., Yilmaz, M.: Synthesis of di-substituted calix [4] arene-based receptors for extraction of chromate and arsenate anions. Tetrahedron 65(38), 7963–7968 (2009)CrossRefGoogle Scholar
  9. 9.
    Bayrakci, M., Ertul, S., Sahin, O., Yilmaz, M.: Synthesis of two new p-tert-butylcalix[4]arene beta-ketoimin derivatives for extraction of dichromate anion. J. Incl. Phenom. Macro. 63(3–4), 241–247 (2009)CrossRefGoogle Scholar
  10. 10.
    Bayrakci, M., Ertul, Ş., Yilmaz, M.: Synthesis of new water-soluble phosphonate calixazacrowns and their use as drug solubilizing agents. J. Incl. Phenom. Macro 74(1-4), 293–303 (2012)CrossRefGoogle Scholar
  11. 11.
    Baldini, L., Sansone, F., Casnati, A., Ungaro, R.: Calixarenes in molecular recognition. In: Supramolecular Chemistry: From Molecules to Nanomaterials. In: Steed, J.W., Gale, P.A., (eds.) pp. 863–878. Wiley, New York (2012). pp. 863–878. ISBN: 978-0-470-74640-0.Google Scholar
  12. 12.
    Sokoließ, T., Menyes, U., Roth, U., Jira, T.: New calixarene-bonded stationary phases in high-performance liquid chromatography: comparative studies on the retention behavior and on influences of the eluent. J. Chromatogr. A 898, 35–52 (2000)CrossRefGoogle Scholar
  13. 13.
    Glennon, J.D., O’Connor, K., Srijaranai, S., Manley, K., Harris, S.J., McKervey, M.A.: Enhanced chromatographic selectivity for Na+ ions on a calixarene-bonded silica phase. Anal. Lett. 26, 153–162 (1993)CrossRefGoogle Scholar
  14. 14.
    Friebe, S., Gebauer, S., Krauss, G.J., Goermar, G., Krueger, J.: HPLC on calixarene bonded silica gels. I. Characterization and applications of the p-tert-butyl-calix[4]arene bonded material. J. Chromatogr. Sci. 33(6), 281–284 (1995)CrossRefGoogle Scholar
  15. 15.
    Brindle, R., Albert, K., Harris, S.J., Troltzsch, C., Horne, E., Glennon, J.D.: Silica-bonded calixarenes in chromatography.1. Synthesis and characterization by solid-state NMR spectroscopy. J. Chromatogr. A 731(1–2), 41–46 (1996)CrossRefGoogle Scholar
  16. 16.
    Glennon, J.D., Homrne, E., Hall, K., Cocker, D., Kuhn, A., Harris, S.J., McKervey, M.A.: Silica-bonded calixarenes in chromatography.2. Chromatographic retention of metal ions and amino acid ester hydrochlorides. J. Chromatogr. A 731(1–2), 47–55 (1996)CrossRefGoogle Scholar
  17. 17.
    Lin, L., Wu, C.Y., Yan, Z.Q., Yan, X.Q., Su, X.L., Han, H.M.: Calix[4]arene derivatives as stationary phases for capillary gas chromatography. Chromatographia 47(11–12), 689–694 (1998)CrossRefGoogle Scholar
  18. 18.
    Ludwig, R.: Calixarenes in analytical and separation chemistry. Fresen. J. Anal. Chem. 367(2), 103–128 (2000)CrossRefGoogle Scholar
  19. 19.
    Meyer, R., Jira, T.: Calixarene HPLC phases—applications. Curr. Anal. Chem. 3(2), 161–170 (2007)CrossRefGoogle Scholar
  20. 20.
    Śliwka-Kaszyńska, M.: Calixarenes as stationary phases in high performance liquid chromatography. Crit. Rev. Anal. Chem. 37(3), 211–224 (2007)CrossRefGoogle Scholar
  21. 21.
    Mokhtari, B., Pourabdollah, K., Dalali, N.: Applications of nano-baskets of calixarenes in chromatography. Chromatographia 73(9–10), 829–847 (2011)CrossRefGoogle Scholar
  22. 22.
    Mokhtari, B., Pourabdollah, K., Dalali, N.: Analytical applications of calixarenes from 2005 up-to-date. J. Incl. Phenom. Macro. 69(1–2), 1–55 (2011)CrossRefGoogle Scholar
  23. 23.
    Yang, Y.-B., Harrison, K., Kindsvater, J.: Characterization of a novel stationary phase derived from a hydrophilic polystyrene-based resin for protein cation-exchange high-performance liquid chromatography. J. Chromatogr. A 723(1), 1–10 (1996)CrossRefGoogle Scholar
  24. 24.
    Perçin, I., Khalaf, R., Brand, B., Morbidelli, M., Gezici, O.: Strong cation-exchange chromatography of proteins on a sulfoalkylated monolithic cryogel. J. Chromatogr. A 1386, 13–21 (2015)CrossRefGoogle Scholar
  25. 25.
    Arena, G., Contino, A., Longo, E., Sciotto, D., Spoto, G., Torrisi, A.: Two calix-crown based stationary phases. Synthesis, chromatographic performance and x-ray photoelectron spectroscopy investigation. J. Supramol. Chem. 2(6), 521–531 (2002)CrossRefGoogle Scholar
  26. 26.
    Lee, Y.K., Ryu, Y.K., Ryu, J.W., Kim, B.E., Park, J.H.: Reversed-phase liquid chromatography of some positional isomers on calix[6]arene-p-sulfonate-bonded silica. Chromatographia 46(9–10), 507–510 (1997)CrossRefGoogle Scholar
  27. 27.
    Xiao, X.-Z., Feng, Y.-Q., Da, S.-L., Zhang, Y.: Preparation and evaluation of p-tert-butyl-calix[4]arene bonded silica stationary phases for high performance liquid chromatography. Chromatographia 49(11–12), 643–648 (1999)CrossRefGoogle Scholar
  28. 28.
    Mollard, A., Ibragimova, D., Antipin, I.S., Konovalov, A.I., Stoikov, I., Zharov, I.: Molecular transport in thiacalix[4]arene-modified nanoporous colloidal films. Microporous Mesoporous Mater. 131(1–3), 378–384 (2010)CrossRefGoogle Scholar
  29. 29.
    Ozcan, F., Ersoz, M., Yilmaz, M.: Preparation and application of calix[4]arene-grafted magnetite nanoparticles for removal of dichromate anions. Mater. Sci. Eng. C 29(8), 2378–2383 (2009)CrossRefGoogle Scholar
  30. 30.
    Deng, Z., Liu, J., Hu, C., Yang, L., Du, H., Hu, K., Huang, Y., Yang, X., Jiang, Q., Zhang, S.: Liquid chromatographic behavior of two alanine-substituted calix[4]arene-bonded silica gel stationary phases. J. Sep. Sci. 37(22), 3268–3275 (2014)CrossRefGoogle Scholar
  31. 31.
    Akoz, E., Erdemir, S., Yilmaz, M.: Immobilization of novel the semicarbazone derivatives of calix[4]arene onto magnetite nanoparticles for removal of Cr(VI) ion. J. Incl. Phenom. Macro. 73(1–4), 449–458 (2012)CrossRefGoogle Scholar
  32. 32.
    Gezici, O., Tabakci, M., Kara, H., Yilmaz, M.: Synthesis of p-tert-butylcalix[4]arene dinitrile bonded aminopropyl silica and investigating its usability as a stationary phase in HPLC. J. Macromol. Sci. Pure A 43(2), 221–231 (2006)CrossRefGoogle Scholar
  33. 33.
    Huai, Q.Y., Zhao, B., Zuo, Y.M.: Preparation and evaluation of an end-capped p-tert-butyl-calix[4]arenebonded-silica stationary phase for reversed-phase high-performance liquid chromatography. Chromatographia 59(9–10), 637–645 (2004)Google Scholar
  34. 34.
    Xiao, Y.-X., Xiao, X.-Z., Feng, Y.-Q., Wang, Z.-H., Da, S.-L.: High-performance liquid chromatography of sulfonamides and quinolones on p-tert-butyl-calix[6]arene-bonded silica gel stationary phase. Talanta 56(6), 1141–1151 (2002)CrossRefGoogle Scholar
  35. 35.
    Tabakci, M.: Immobilization of calix[6]arene bearing carboxylic acid and amide groups on aminopropyl silica gel and its sorption properties for Cr(VI). J. Incl. Phenom. Macro. 61(1–2), 53–60 (2008)CrossRefGoogle Scholar
  36. 36.
    Razavi, N., Akhlaghinia, B.: Cu(II) immobilized on aminated epichlorohydrin activated silica (CAES): as a new, green and efficient nanocatalyst for preparation of 5-substituted-1H-tetrazoles. RSC Adv. 5(16), 12372–12381 (2015)CrossRefGoogle Scholar
  37. 37.
    Santodonato, J., Lande, S.S., Howard, P.H., Orzel, D., Bogy, D.: Investigation of selected potential environmental contaminants: Epichlorohydrin and epibromohydrin. U.S. Environmental Protection Agency, EPA-560/11-80-006 (1980)Google Scholar
  38. 38.
    Larson, R.A., Weber, E.J.: Reaction mechanisms in environmental organic chemistry, p. 122. CRC Press, Boca Raton (1994)Google Scholar
  39. 39.
    Xu, W., Li, J.-S., Feng, Y.-Q., Da, S.-L., Chen, Y.-Y., Xiao, X.-Z.: Preparation and characterization of p-tert-butyl-calix[6]arene bonded silica gel stationary phase for high-performance liquid chromatography. Chromatographia 48(3–4), 245–250 (1998)CrossRefGoogle Scholar
  40. 40.
    Batista-Viera, F., Janson, J.-C., Carlsson, J.: Affinity chromatography. In: Janson, J.-C. (ed.) Protein Purification: Principles, High Resolution Methods, and Applications, vol. 54, 3rd edn, p. 251. Wiley, Hoboken (2012)Google Scholar
  41. 41.
    Hu, K., Zhao, W., Wen, F., Liu, J., Zhao, X., Xu, Z., Niu, B., Ye, B., Wu, Y., Zhang, S.: Investigation on the preparation and chromatographic behavior of a new para-tert-butylcalix[4]arene-1,2-crown-4 stationary phase for high performance liquid chromatography. Talanta 85(1), 317–324 (2011)CrossRefGoogle Scholar
  42. 42.
    Li, L.-S., Liu, M., Da, S.-L., Feng, Y.-Q.: High performance liquid chromatography of aromatic carboxylic acids on p-tert-butyl-calix[8]arene-bonded silica gel stationary phase. Talanta 62(3), 643–648 (2004)CrossRefGoogle Scholar
  43. 43.
    Zeng, L., Luo, K., Gong, Y.: Preparation and characterization of dendritic composite magnetic particles as a novel enzyme immobilization carrier. J. Mol. Catal. B Enzym. 38(1), 24–30 (2006)CrossRefGoogle Scholar
  44. 44.
    Sayin, S., Ozcan, F., Yilmaz, M.: Synthesis and evaluation of chromate and arsenate anions extraction ability of a N-methylglucamine derivative of calix[4]arene immobilized onto magnetic nanoparticles. J. Hazard. Mater. 178(1–3), 312–319 (2010)CrossRefGoogle Scholar
  45. 45.
    Sayin, S., Yilmaz, M.: Synthesis of a new calixarene derivative and its immobilization onto magnetic nanoparticle surfaces for excellent extractants toward Cr(VI), As(V), and U(VI). J. Chem. Eng. Data 56(5), 2020–2029 (2011)CrossRefGoogle Scholar
  46. 46.
    Sayin, S., Ozcan, F., Memon, S., Yilmaz, M.: Synthesis and oxoanions (dichromate/arsenate) sorption study of N-methylglucamine derivative of calix[4]arene immobilized onto poly[(phenyl glycidyl ether)-co-formaldehyde]. J. Incl. Phenom. Macro. 67(3–4), 385–391 (2010)CrossRefGoogle Scholar
  47. 47.
    Liu, M., Li, L.-S., Da, S.-L., Feng, Y.-Q.: High performance liquid chromatography with cyclodextrin and calixarene macrocycle bonded silica stationary phases for separation of steroids. Talanta 66(2), 479–486 (2005)CrossRefGoogle Scholar
  48. 48.
    Jain, V.K., Pandya, R.A., Pillai, S.G., Agrawal, Y.K., Shrivastav, P.S.: Application of a chelate forming calix[4]arene-ovanillinthiosemicarbazone resin to the separation, preconcentration and trace determination of Cu(II), Cd(II) and Pb(II) in natural water samples. Microchim. Acta 147(4), 253–264 (2004)CrossRefGoogle Scholar
  49. 49.
    Bhatti, A.A., Qureshi, I., Memon, N., Memon, S.: Evaluation of perchlorate sorption behavior of calix[4]arene appended resin. J. Incl. Phenom. Macro. 76(1–2), 55–60 (2013)CrossRefGoogle Scholar
  50. 50.
    Akceylan, E., Yilmaz, M., Bartsch, R.A.: Immobilization of cyclic alkylamine calix[4]arene derivatives on Merrifield resin: evaluation of extraction ability toward dichromate. J. Macromol. Sci. Pure 43(3), 477–486 (2006)CrossRefGoogle Scholar
  51. 51.
    Solangi, I.B., Bhatti, A.A., Kamboh, M.A., Memon, S., Bhanger, M.I.: Comparative fluoride sorption study of new calix[4]arene-based resins. Desalination 272(1–3), 98–106 (2011)CrossRefGoogle Scholar
  52. 52.
    de Gaetano, Y., Clarot, I., Regnouf-de-Vains, J.-B.: Cu(I) and Zn(II) chelations on polymer beads modified by attachment of a bipyridyl-calixarene-based chelate. Tetrahedron Lett. 50(42), 5793–5797 (2009)CrossRefGoogle Scholar
  53. 53.
    Lakouraj, M.M., Hasanzadeh, F., Zare, E.N.: Nanogel and super-paramagnetic nanocomposite of thiacalix[4]arene functionalized chitosan: synthesis, characterization and heavy metal sorption. Iran. Polym. J. 23(12), 933–945 (2014)CrossRefGoogle Scholar
  54. 54.
    Qureshi, I., Memon, S., Yilmaz, M.: Novel Calix[4]arene-based Amberlite XAD-4 Modified Resin for As(III) removal from water. Clean-Soil Air Water 41(3), 258–266 (2013)CrossRefGoogle Scholar
  55. 55.
    Urban, I., Ratcliffe, N.M., Duffield, J.R., Elder, G.R., Patton, D.: Functionalized paramagnetic nanoparticles for waste water treatment. Chem. Commun. 46(25), 4583–4585 (2010)CrossRefGoogle Scholar
  56. 56.
    Thompson, A.B., Cope, S.J., Swift, T.D., Notestein, J.M.: Adsorption of n-butanol from dilute aqueous solution with grafted calixarenes. Langmuir 27(19), 11990–11998 (2011)CrossRefGoogle Scholar
  57. 57.
    Hofer, S., Ronacher, A., Horak, J., Graalfs, H., Lindner, W.: Static and dynamic binding capacities of human immunoglobulin G on polymethacrylate based mixed-modal, thiophilic and hydrophobic cation exchangers. J. Chromatogr. A 1218(49), 8925–8936 (2011)CrossRefGoogle Scholar
  58. 58.
    Gezici, O., Ayar, A.: Stepwise frontal analysis to derive equilibrium sorption data for copper and aniline on functionalized sporopollenin. Clean-Soil Air Water 37(4–5), 349–354 (2009)CrossRefGoogle Scholar
  59. 59.
    Bayrakci, M., Gezici, O., Bas, S.Z., Ozmen, M., Maltas, E.: Novel humic acid-bonded magnetite nanoparticles for protein immobilization. Mater. Sci. Eng. C 42, 546–552 (2014)CrossRefGoogle Scholar
  60. 60.
    Sayin, S., Ozcan, F., Yilmaz, M.: Two novel calixarene functionalized iron oxide magnetite nanoparticles as a platform for magnetic separation in the liquid–liquid/solid–liquid extraction of oxyanions. Mater. Sci. Eng. C 33(4), 2433–2439 (2013)CrossRefGoogle Scholar
  61. 61.
    Sayin, S., Yilmaz, E., Yilmaz, M.: Improvement of catalytic properties of Candida Rugosa lipase by sol-gel encapsulation in the presence of magnetic calix[4]arene nanoparticles. Org. Biomol. Chem. 9(11), 4021–4024 (2011)CrossRefGoogle Scholar
  62. 62.
    Lukashova, M.S., Belikov, K.N., Bryleva, EYu., Kharchenko, S.G., Vishnevskii, S.G., Kalchenko, V.I.: Sorption of Eu(III) on Merrifield resin modified with thiacalix[4]arenes. Prot. Met. Phys. Chem. Surf. 50(5), 608–612 (2014)CrossRefGoogle Scholar
  63. 63.
    Mangia, A., Pochini, A., Ungaro, R., Andreetti, G.D.: 4-tert-butylcalix[8]areme as a stationary phase in gas-solid chromatography. Anal. Lett. 16(13), 1027–1036 (1983)CrossRefGoogle Scholar
  64. 64.
    Mnuk, P., Feltl, L.: Gas chromatographic study of the inclusion properties of calixarenes I. p-tert.-Butylcalix[4]arene in a micropacked column. J. Chromatogr. A 696(1), 101–112 (1995)CrossRefGoogle Scholar
  65. 65.
    Mnuk, P., Feltl, L., Schurig, V.: Gas chromatographic study of the inclusion properties of calixarenes II. Selective properties of cyclic tetra- to octamers derived from phenol, and some problems associated with the use of calixarenes in capillary gas chromatography. J. Chromatogr. A 732(1), 63–74 (1996)CrossRefGoogle Scholar
  66. 66.
    Śliwka-Kaszyńska, M., Jaszczołt, K., Witt, D., Rachoń, J.: High-performance liquid chromatography of di- and trisubstituted aromatic positional isomers on 1,3-alternate 25,27-dipropoxy-26,28-bis-[3-propyloxy]-calix[4]arene-bonded silica gel stationary phase. J. Chromatogr. A 1055(1–2), 21–28 (2004)Google Scholar
  67. 67.
    Li, L.-S., Liu, M., Da, S.-L., Feng, Y.-Q.: Studies on the chromatographic behavior of nucleosides and bases on p-tert-butyl-calix[8]arene-bonded silica gel stationary phase by HPLC. Talanta 63(2), 433–441 (2004)CrossRefGoogle Scholar
  68. 68.
    Li, L.-S., Da, S.-L., Feng, Y.-Q., Liu, M.: Study on the chromatographic behavior of water-soluble vitamins on p-tert-butyl-calix[8]arene-bonded silica gel stationary phase by HPLC. Talanta 64(2), 373–379 (2004)CrossRefGoogle Scholar
  69. 69.
    Chamseddin, C., Jira, T.: Evaluation of the chromatographic performance of conventional, polar-endcapped and calixarene-bonded stationary phases for the separation of water-soluble vitamins. Chromatographia 76(9–10), 449–457 (2013)CrossRefGoogle Scholar
  70. 70.
    Śliwka-Kaszyńska, M., Gorczyca, G., Ślebioda, M.: Characterization of 1,3-alternate calix[4]arene-silica bonded stationary phases and their comparison to selected commercial columns by using principal component analysis. J. Chromatogr. A 1217(3), 329–336 (2010)CrossRefGoogle Scholar
  71. 71.
    Śliwka-Kaszyńska, M., Ślebioda, M.: Polycyclic aromatic hydrocarbons as test probes to investigate the retention behavior of 1,3-alternatecalix[4]arene silica-bonded stationary phases. J. Sep. Sci. 37, 543–550 (2014)CrossRefGoogle Scholar
  72. 72.
    Sokoließ, T., Menyes, U., Roth, U., Jira, T.: Separation of cis- and trans-isomers of thioxanthene and dibenz[b, e]oxepin derivatives on calixarene- and resorcinarenebonded high-performance liquid chromatography stationary phases. J. Chromatogr. A 948, 309–319 (2002)CrossRefGoogle Scholar
  73. 73.
    Sokoließ, T., Schönherr, J., Menyes, U., Roth, U., Jira, T.: Characterization of calixarene- and resorcinarene-bonded stationary phases I. Hydrophobic interactions. J. Chromatogr. A 1021, 71–82 (2003)CrossRefGoogle Scholar
  74. 74.
    Elhenawee, M., Hashem, H., Ibrahim, A.E.: Comparison between calixarene and conventional HPLC-stationary phases concerning with separation of antihypertensive drugs. J. Liq. Chromatogr. Relat. Technol. 37, 1–25 (2014)CrossRefGoogle Scholar
  75. 75.
    Machida, Y., Nishi, H., Nakamura, K.: Enantiomer separation of hydrophobic amino compounds by high-performance liquid chromatography using crown ether dynamically coated chiral stationary phase. J. Chromatogr. A 830, 311–320 (1999)CrossRefGoogle Scholar
  76. 76.
    Hashem, H., Jira, TH.: Retention behaviour of beta-blockers in HPLC using a monolithic column. J. Sep. Sci. 29, 986–994 (2006)CrossRefGoogle Scholar
  77. 77.
    Li, L.-S., Da, S.-L., Feng, Y.-Q., Liu, M.: Preparation and characterization of a p-tert-butyl-calix[6]-1,4-benzocrown-4-bonded silica gel stationary phase for liquid chromatography. J. Chromatogr. A 1040, 53–61 (2004)CrossRefGoogle Scholar
  78. 78.
    Gebauer, S., Friebe, S., Gübitz, G., Krauss, G.J.: High performance liquid chromatography on calixarene-bonded silica gels. II. Separations of regio-and stereoisomers on p-tert-butylcalix[n]arene phases. J. Chromatogr. Sci. 36(8), 383–387 (1998)CrossRefGoogle Scholar
  79. 79.
    Gebauer, S., Friebe, S., Scherer, G., Gübitz, G., Krauss, G.J.: High performance liquid chromatography on calixarene-bonded silica gels. III. Separations of cis/trans isomers of proline-containing peptides. J. Chromatogr. Sci. 36(8), 388–394 (1998)CrossRefGoogle Scholar
  80. 80.
    Akceylan, E., Bahadir, M., Yilmaz, M.: Removal efficiency of a calix[4]arene-based polymer for water-soluble carcinogenic direct azo dyes and aromatic amines. J. Hazard. Mater. 162(2–3), 960–966 (2009)CrossRefGoogle Scholar
  81. 81.
    Stoikov, I.I., Vavilova, A.A., Badaeva, R.D., Gorbachuk, V.V., Evtugyn, V.G., Sitdikov, R.R., Yakimova, L.S., Zharov, I.: Synthesis of hybrid nano- and microsized particles on the base of colloid silica and thiacalix[4]arene derivatives. J. Nanopart. Res. 15(5), 1617 (2013)CrossRefGoogle Scholar
  82. 82.
    Gorbachuk, V.V., Yakimova, L.S., Vavilova, A.A., Ziatdinova, R.V., Rizvanov, IKh, Trifonov, A.A., Samohina, A.I., Evtugyn, V.G., Stoikov, I.I.: MALDI-TOF MS and morphology studies of thiacalixarene-silsesquioxane products of oligo- and polycondensation. Silicon 6, 215–226 (2014)CrossRefGoogle Scholar
  83. 83.
    Adhikari, B.B., Kanemitsu, M., Kawakita, H.: Jumina, Ohto, K.: Synthesis and application of a highly efficient polyvinylcalix[4]arene tetraacetic acid resin for adsorptive removal of lead from aqueous solutions. Chem. Eng. J. 172(1), 341–353 (2011)CrossRefGoogle Scholar
  84. 84.
    Adhikari, B.B., Gurung, M., Kawakita, H., Ohto, K.: Solid phase extraction, preconcentration and separation of indium with methylene crosslinked calix[4]- and calix[6]arene carboxylic acid resins. Chem. Eng. Sci. 78, 144–154 (2012)CrossRefGoogle Scholar
  85. 85.
    Bayrakci, M., Özcan, F., Ertul, Ş.: Synthesis of calixamide nanofibers by electrospinning and toxic anion binding to the fiber structures. Tetrahedron (2015). doi: 10.1016/j.tet.2015.03.090 Google Scholar
  86. 86.
    Kim, H.J., Lee, M.H., Mutihac, L., Vicens, J., Kim, J.S.: Host–guest sensing by calixarenes on the surfaces. Chem. Soc. Rev. 41(3), 1173–1190 (2012)CrossRefGoogle Scholar
  87. 87.
    Erdemir, S., Bahadir, M., Yilmaz, M.: Extraction of carcinogenic aromatic amines from aqueous solution using calix[n]arene derivatives as carrier. J. Hazard. Mater. 168(2–3), 1170–1176 (2009)CrossRefGoogle Scholar
  88. 88.
    Yilmaz, M., Erdemir, S.: Calixarene-based receptors for molecular recognition. Turk. J. Chem. 37, 558–585 (2013)CrossRefGoogle Scholar
  89. 89.
    Memon, S., Tabakci, M., Roundhill, D.M., Yilmaz, M.: Synthesis and evaluation of the Cr(VI) extraction ability of amino/nitrile calix[4]arenes immobilized onto a polymeric backbone. React. Funct. Polym. 66(11), 1342–1349 (2006)CrossRefGoogle Scholar
  90. 90.
    Notestein, J.M., Katz, A., Iglesia, E.: Energetics of small molecule and water complexation in hydrophobic calixarene cavities. Langmuir 22(9), 4004–4014 (2006)CrossRefGoogle Scholar
  91. 91.
    Schneider, C., Jira, T.: Selectivity of calixarene-bonded silica phases in HPLC: description of special characteristics with a multiple term linear equation at different methanol concentrations. J. Sep. Sci. 33(19), 2943–2955 (2010)CrossRefGoogle Scholar
  92. 92.
    Śliwka-Kaszyńska, M., Łępicka, K., Ślebioda, M.: Chromatographic behavior of a new hybrid type RP material containing silica bonded 1,3- alternate 25,27-bis-[cyanopropyloxy]-26,28- bis-[3-propyloxy]-calix[4]arene. J. Sep. Sci 33(19), 2956–2964 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of Science and ArtsNigde UniversityNigdeTurkey
  2. 2.Department of Bioengineering, Faculty of EngineeringKaramanoğlu Mehmetbey UniversityKaramanTurkey

Personalised recommendations