Isoflavone aglycons-sulfobutyl ether-β-cyclodextrin inclusion complexes: in solution and solid state studies

  • Rosanna Stancanelli
  • Valentina Venuti
  • A. Arigò
  • M. L. Calabrò
  • C. Cannavà
  • V. Crupi
  • D. Majolino
  • S. Tommasini
  • C. A. Ventura
Original Article


The effect of a polyanionic variably substituted sulfobutyl ether-β-cyclodextrin (SBE-β-CyD), complexation on the UV absorption of genistein (Gen) and daidzein (Dai) was studied in pure water. A phase solubility study was performed, according to the method reported by Higuchi and Connors, to evaluate the changes of isoflavones in the complexation state and type-AL solubility diagrams for both isoflavones were obtained suggesting that they form complexes with 1:1 molar ratio. These results were confirmed by Job’s plot method. Complexation strongly increases the water solubility of isoflavones. The in vitro dissolution of isoflavones entrapped into SBE-β-CyD significantly surpassed that of the free isoflavones (over 90 % of the loaded Gen and Dai dissolved in 15 and 30 min, respectively). Finally, 1:1 molar ratio solid complexes were prepared by the kneading method and characterized in solid state by FTIR-ATR spectroscopy, with particular regard to O–H and C=O stretching vibrations, achieving structural information on the modifications induced by complexation on the H-bond scheme, also by applying band decomposition and curve-fit.


Sulfobutyl ether-β-cyclodextrin Isoflavones UV–Vis spectroscopy Solubility measurements Dissolution rate FTIR-ATR spectroscopy 


  1. 1.
    Reiter, E., Beck, V., Medjakovic, S., Jungbauer, A.: Isoflavones are safe compounds for therapeutical applications-evaluation of in vitro data. Gynecol. Endocrinol. 25, 554–580 (2009)CrossRefGoogle Scholar
  2. 2.
    Warri, A., Saarinen, N.M., Makela, S., Hilakivi-Clarke, L.: The role of early life genistein exposures in modifying breast cancer risk. Br. J. Cancer 98, 1485–1493 (2008)CrossRefGoogle Scholar
  3. 3.
    Ratna, W.N.: Inhibition of estrogenic stimulation of gene expression by genistein. Life Sci. 71, 865–877 (2002)CrossRefGoogle Scholar
  4. 4.
    Mueller, S.O., Simon, S., Chae, K., Metzler, M., Korach, K.S.: Phytoestrogens and their human metabolites show distinct agonistic and antagonistic properties on estrogen receptor alpha (ERalpha) and ERbeta in human cells. Toxicol. Sci. 80, 14–25 (2004)CrossRefGoogle Scholar
  5. 5.
    Jiang, Q., Payton-Stewart, F., Elliott, S., Driver, J., Rhodes, L.V., Zhang, Q., Zheng, S., Bhatnagar, D., Boue, S.M., Collins-Burow, B.M., Sridhar, J., Stevens, C., McLachlan, J.A., Wiese, T.E., Burow, M.E., Wang, G.: Effects of 7-O substitutions on estrogenic and anti-estrogenic activities of daidzein analogues in MCF-7 breast cancer cells. J. Med. Chem. 53, 6153–6163 (2010)CrossRefGoogle Scholar
  6. 6.
    Barbosa, A.C., Lajolo, F.M., Genovese, M.I.: Effect of free or protein-associated soy isoflavones on the antioxidant status in rats. J. Sci. Food Agric. 91, 721–731 (2011)CrossRefGoogle Scholar
  7. 7.
    Byun, J.S., Lee, S.S.: Effect of soybeans and sword beans on bone metabolism in a rat model of osteoporosis. Ann. Nutr. Metab. 56, 106–112 (2010)CrossRefGoogle Scholar
  8. 8.
    Ruijter, J., Valstar, M.J., Narajczyk, M., Wegrzyn, G., Kulik, W., Ijist, L., Wagemans, T., van der Wal, W.M., Wijburg, F.A.: Genistein in Sanfilippo disease: a randomized controlled crossover tria. Ann. Neurol. 71, 110–120 (2012)CrossRefGoogle Scholar
  9. 9.
    Uckun, F.M., Evans, W.E., Forsyth, C.J., Waddick, K.G., Ahlgren, L.T., Chelstrom, L.M., Burkhardt, A., Bolen, J., Myers, D.E.: Biotherapy of B-cell precursor leukemia by targeting genistein to CD19-associated tyrosine kinases. Science 267, 886–891 (1995)CrossRefGoogle Scholar
  10. 10.
    Rusin, A., Krawczyk, Z., Grynkiewicz, G., Gogler, A., Zawisza-Puchałka, J., Szeja, W.: Synthetic derivatives of genistein, their properties and possible applications. Acta Biochim. Pol. 57, 23–34 (2010)Google Scholar
  11. 11.
    Si, H.Y., Li, D.P., Wang, T.M., et al.: Improving the anti-tumor effect of genistein with a biocompatible superparamagnetic drug delivery system. J. Nanosci. Nanotechnol. 10, 2325–2331 (2010)CrossRefGoogle Scholar
  12. 12.
    Zhang, Z.W., Huang, Y., Gao, F., Bu, H.H., Gu, W.W., Li, Y.P.: Daidzein-phospholipid complex loaded lipid nanocarriers improved oral absorption: in vitro characteristics and in vivo behaviour in rats. Nanoscale 3, 1780–1787 (2011)CrossRefGoogle Scholar
  13. 13.
    Loftsson, T., Brewster, M.E.: Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. J. Pharm. Sci. 85, 1017–1025 (1996)CrossRefGoogle Scholar
  14. 14.
    Loftsson, T., Brewster, M.E.: Pharmaceutical applications of cyclodextrins: basic science and product development. J. Pharm. Pharmacol. 62, 1607–1621 (2010)CrossRefGoogle Scholar
  15. 15.
    Tolman, J.A., Nelson, N.A., Son, Y.J., Bosselmann, S., Wiederhold, N.P., Peters, J.I., McConville, J.T., Williams III, R.O.: Characterization and pharmacokinetic analysis of aerosolized aqueous voriconazole solution. Eur. J. Pharm. Biopharm. 72, 199–205 (2009)CrossRefGoogle Scholar
  16. 16.
    Savolainen, J., Järvinen, K., Matilainen, L., Järvinen, T.: Improved dissolution and bioavailability of phenytoin by sulfobutylether-β-cyclodextrin (SBE)7 M-β-CD) and hydroxypropyl-β-cyclodextrin (HP-β-CD) complexation. Int. J. Pharm. 165, 69–78 (1998)CrossRefGoogle Scholar
  17. 17.
    García-Río, L., Méndez, M., Paleo, M.R., Sardina, F.J.: New insights in cyclodextrin: surfactant mixed systems from the use of neutral and anionic cyclodextrin derivatives. J. Phys. Chem. B 111, 12756–12764 (2007)CrossRefGoogle Scholar
  18. 18.
    Lockwood, S.F., O’Malley, S., Mosher, G.L.: Improved aqueous solubility of crystalline astaxanthin (3,30-dihydroxy-b, β-carotene-4,40-dione) by Captisol® (sulfobutyl ether β-cyclodextrin). J. Pharm. Sci. 92, 922–926 (2003)CrossRefGoogle Scholar
  19. 19.
    Fukuda, M., Miller, D.A., Peppas, N.A., McGinity, J.W.: Influence of sulfobutyl ether-β-cyclodextrin (Captisol®) on the dissolution properties of a poorly soluble drug from extrudates prepared by hot-melt extrusion. Int. J. Pharm. 350, 188–196 (2008)CrossRefGoogle Scholar
  20. 20.
    Qu, Q., Tucker, E., Christian, S.D.: Sulfoalkyl ether β-cyclodextrin derivatives: synthesis and characterizations. J. Incl. Phenom. Macrocycl. Chem. 43, 213–221 (2002)CrossRefGoogle Scholar
  21. 21.
    Sotthivira, S., Haslam, J.L., Stella, V.J.: Evaluation of various properties of alternative salt forms of sulfobutylether-β-cyclodextrin, (SBE)7 M-β-CD. Int. J. Pharm. 330, 73–81 (2007)CrossRefGoogle Scholar
  22. 22.
    Song, A.J., Wang, J.H., Liu, C.D., Deng, L.H.: Sulfoalkyl ether β-cyclodextrin derivatives synthesized by a single step method as pharmaceutical biomaterials. Chin. Sci. Bull. 54, 3187–3199 (2009)CrossRefGoogle Scholar
  23. 23.
    Loftsson, T., Magnusdottir, A., Masson, M., Sigurjonsdottir, J.F.: Self-association and cyclodextrin solubilization of drugs. J. Pharm. Sci. 91, 2307–2316 (2002)CrossRefGoogle Scholar
  24. 24.
    Loftsson, T., Masson, M., Brewster, M.E.: Self-association of cyclodextrin and cyclodextrin complexes. J. Pharm. Sci. 93, 1091–1099 (2004)CrossRefGoogle Scholar
  25. 25.
    Stella, V.J., He, Q.: Cyclodextrins. Toxicol. Pathol. 36, 30–42 (2008)CrossRefGoogle Scholar
  26. 26.
    Messner, M., Kurkov, S.V., Jansook, P., Loftsson, T.: Selfassembled cyclodextrin aggregates and nanoparticles. Int. J. Pharm. 387, 199–208 (2010)CrossRefGoogle Scholar
  27. 27.
    Irie, T., Uekama, K.: Pharmaceutical applications of cyclodextrins. III. Toxicological issues and safety evaluation. J. Pharm. Sci. 86, 147–162 (1997)CrossRefGoogle Scholar
  28. 28.
    Stella, V.J., Rajewski, R.A.: Cyclodextrins: their future in drug formulation and delivery. Pharm. Res. 14, 556–567 (1997)CrossRefGoogle Scholar
  29. 29.
    Rajewski, R.A., Traiger, G., Bresnahan, J., Jaberaboansri, P., Stella, V.J., Thompson, D.O.: Preliminary safety evaluation of parenterally administrated sulfoalkyl ether β-cyclodextrin derivatives. J. Pharm. Sci. 84, 927–932 (1995)CrossRefGoogle Scholar
  30. 30.
    Sotthivirat, S., Haslam, J.L., Stella, V.J.: Evaluation of various properties of alternative salt forms of sulfobutylether-β-cyclodextrin, (SBE)7 M-β-CD. Int. J. Pharm. 330, 73–81 (2007)CrossRefGoogle Scholar
  31. 31.
    Xiao, D., Yang, B., Zhao, Y.L., Liao, X.L., Yang, X.M., Wang, F., Chen, Y.J., Zhou, R.G.: Inclusion complexes of dihydroartemisinin with cyclodextrin and its derivatives: characterization, solubilization and inclusion mode. J. Incl. Phenom. Macrocycl. Chem. 79, 349–356 (2014)CrossRefGoogle Scholar
  32. 32.
    Cannavà, C., Crupi, V., Guardo, M., Majolino, D., Stancanelli, R., Tommasini, S., Ventura, C.A., Venuti, V.: Phase solubility and FTIR-ATR studies of idebenone/sulfobutyl ether β-cyclodextrin inclusion complex. J. Incl. Phenom. Macrocycl. Chem. 75, 255–262 (2013)CrossRefGoogle Scholar
  33. 33.
    Crupi, V., Ficarra, R., Guardo, M., Majolino, D., Stancanelli, R., Venuti, V.: UV–Vis and FTIR-ATR spectroscopic techniques to study the inclusion complexes of genistein with β-cyclodextrins. J. Pharm. Biomed. Anal. 44, 110–117 (2007)CrossRefGoogle Scholar
  34. 34.
    Stancanelli, R., Mazzaglia, A., Tommasini, S., Calabrò, M.L., Guardo, M., Villari, V., Ficarra, P., Ficarra, R.: The enhancement of isoflavones water solubility by complexation with modified cyclodextrins: a spectroscopic investigation with implications in the pharmaceutical analysis. J. Pharm. Biomed. Anal. 44, 980–984 (2007)CrossRefGoogle Scholar
  35. 35.
    Cannavà, C., Crupi, V., Ficarra, P., Guardo, M., Majolino, D., Stancanelli, R., Venuti, V.: Physicochemical characterization of coumestrol/β-cyclodextrins inclusion complexes by UV–Vis and FTIR-ATR spectroscopies. Vib. Spectrosc. 48, 172–178 (2008)CrossRefGoogle Scholar
  36. 36.
    Crupi, V., Majolino, D., Paciaroni, A., Stancanelli, R., Venuti, V.: Influence of the “host-guest” interactions on the mobility of genistein/β-cyclodextrin inclusion complex. J. Phys. Chem. B 113, 11032–11038 (2009)CrossRefGoogle Scholar
  37. 37.
    Cannavà, C., Crupi, V., Ficarra, P., Guardo, M., Majolino, D., Mazzaglia, A., Stancanelli, R., Venuti, V.: Physico-chemical characterization of an amphiphilic cyclodextrin/genistein complex. J. Pharm. Biomed. Anal. 51, 1064–1068 (2010)CrossRefGoogle Scholar
  38. 38.
    Crupi, V., Majolino, D., Paciaroni, A., Rossi, B., Stancanelli, R., Venuti, V., Viliani, G.: The effect of hydrogen bond on the vibrational dynamics of genistein free and complexed with β-cyclodextrins. J. Raman Spectrosc. 41, 764–770 (2010)Google Scholar
  39. 39.
    Daruhazi, A.E., Szente, L., Balogh, B., Matyus, P., Beni, S., Takacs, M., et al.: Utility of cyclodextrins in the formulation of genistein: Part 1. Preparation and physicochemical properties of genistein complexes with native cyclodextrins. J. Pharm. Biomed. Anal. 48, 636–640 (2008)CrossRefGoogle Scholar
  40. 40.
    Xavier, C.R., Silva, A.P.C., Schwingel, L.C., Borghetti, G.S., Koester, L.S., Mayorga, P., Teixeira, H.F., Bassani, V.L., Lula, I.S., Sinisterra, R.D.: Improvement of genistein content in solid genistein/β-cyclodextrin complexes. Quim. Nova 33, 587–590 (2010)CrossRefGoogle Scholar
  41. 41.
    Higuchi, T., Connors, K.A.: Phase-solubility techniques. Adv. Anal. Chem. Instrum. 4, 117–212 (1965)Google Scholar
  42. 42.
    Gibaud, S., Zirar, S.B., Mutzenhardt, P., Fries, I., Astier, A.: Melarsoprol-cyclodextrins inclusion complexes. Int. J. Pharm. 306, 107–121 (2005)CrossRefGoogle Scholar
  43. 43.
    Crupi, V., Longo, F., Majolino, D., Venuti, V.: Vibrational properties of water molecules adsorbed in different zeolitic frameworks. J. Phys. 18, 3563–3580 (2006)Google Scholar
  44. 44.
    Brewster, M.E., Loftsson, T.: Cyclodextrins as pharmaceutical solubilizers. Adv. Drug Deliv. Rev. 59, 645–666 (2007)CrossRefGoogle Scholar
  45. 45.
    Loftsson, T., Hreinsdóttir, D., Másson, M.: Evaluation of cyclodextrin solubilization of drugs. Int. J. Pharm. 302, 18–28 (2005)CrossRefGoogle Scholar
  46. 46.
    Singh, H., Singh, S., Srivastava, A., Tandon, P., Bharti, P., Kumar, S., Maurya, R.: Conformational analysis and vibrational study of daidzein by using FT-IR and FT-Raman spectroscopies and DFT calculations. Spectrochim. Acta Part A 120, 405–415 (2014)CrossRefGoogle Scholar
  47. 47.
    Li, N., Liu, J., Zhao, X., Gao, Y., Zhang, L., Zhang, J., Yu, L.: Complex formation of ionic liquid surfactant and β-cyclodextrin. Colloids Surf. A 292, 196–201 (2007)CrossRefGoogle Scholar
  48. 48.
    Hamidi, H., Abderrahim, R., Meganem, F.: Spectroscopic studies of inclusion complex of β-cyclodextrin and benzidine diammonium dipicrate, Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 75, 32–36 (2010)CrossRefGoogle Scholar
  49. 49.
    Gavira, J.M., Hernanz, A., Bratu, I.: Dehydration of β-cyclodextrin: an IR ν(OH) band profile analysis. Vib. Spectrosc. 32, 137–146 (2003)CrossRefGoogle Scholar
  50. 50.
    Stancanelli, R., Ficarra, R., Cannavà, C., Guardo, M., Calabrò, M.L., Ficarra, P., Ottanà, R., Maccari, R., Crupi, V., Majolino, D., Venuti, V.: UV–Vis and FTIR-ATR characterization of 9-fluorenon-2-carboxyester/(2-hydroxypropyl)-β-cyclodextrin inclusion complex. J. Pharm. Biomed. Anal. 47, 704–709 (2008)CrossRefGoogle Scholar
  51. 51.
    Bratu, I., Veiga, F., Fernandes, C., Hernanz, A., Gavira, J.M.: Infrared spectroscopic study of triacetyl-β-cyclodextrin and its inclusion complex with nicapiridine. Spectroscopy 18, 459–467 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Rosanna Stancanelli
    • 1
  • Valentina Venuti
    • 2
  • A. Arigò
    • 1
  • M. L. Calabrò
    • 1
  • C. Cannavà
    • 3
  • V. Crupi
    • 2
  • D. Majolino
    • 2
  • S. Tommasini
    • 1
  • C. A. Ventura
    • 1
  1. 1.Dipartimento di Scienze del Farmaco e Prodotti per la SaluteUniversità di MessinaMessinaItaly
  2. 2.Dipartimento di Fisica e di Scienze della TerraUniversità di MessinaMessinaItaly
  3. 3.Dipartimento di Patologia UmanaUniversità di MessinaMessinaItaly

Personalised recommendations