Advertisement

Molecular dynamics of nor-Seco-cucurbit[10]uril complexes

  • Musa I. El-Barghouthi
  • Hamzeh M. Abdel-Halim
  • Feryal J. Haj-Ibrahim
  • Khaled Bodoor
  • Khaleel I. Assaf
Original Article

Abstract

Molecular dynamics simulations were carried out to investigate the structure and dynamics of the 1:1 and 1:2 inclusion complexes formed by nor-Seco-cucurbit[10]uril (ns-CB[10]) with 1-adamantanmethylammonium in water. Two and three orientational isomers were considered for 1:1 and 1:2 complexes, respectively. These isomers are identified by the orientation/position of the ammonium group in the guest relative to the flexible and rigid carbonyl portals of the ns-CB[10] host. Results demonstrate that the inclusion of one guest molecule within one cavity in the host induces similar conformational changes in both the occupied and empty cavities. The average structure for each complex shows that the guest molecule is shifted closer to the side that lacks the CH2-bridge in the host, and that the ammonium group of the guest interacts with the oxygens of the host’s portals via ion–dipole interactions with the hydrophobic part of the guest molecule resides in the cavity of the host. Furthermore, the 1:1 complexes are found to interconvert over the time of the simulation. This observation is not found for 1:2 complexes. Finally, MM–PBSA calculations show that 1:2 complexes are significantly more stable than their 1:1 counterparts while two orientations of the 1:2 complexes are more stable than the third.

Keywords

Cucurbit[n]uril Simulations Inclusion complexes MM–PBSA 

Notes

Acknowledgments

The authors wish to thank the Hashemite University for the financial support.

References

  1. 1.
    Lagona, J., Mukhopadhyay, P., Chakrabarti, S., Isaacs, L.: The cucurbit[n]uril family. Angew. Chem. Int. Ed. 44, 4844–4870 (2005)CrossRefGoogle Scholar
  2. 2.
    Masson, E., Ling, X., Joseph, R., Kyeremeh-Mensah, L., Lu, X.: Cucurbituril chemistry: a tale of supramolecular success. RSC Adv. 2, 1213–1247 (2012)CrossRefGoogle Scholar
  3. 3.
    Isaacs, L.: Stimuli responsive systems constructed using cucurbit[n]uril-type molecular containers. Acc. Chem. Res. 47, 2052–2062 (2014)CrossRefGoogle Scholar
  4. 4.
    Ko, Y.H., Hwang, I., Lee, D.W., Kim, K.: Ultrastable host-guest complexes and their applications. Isr. J. Chem. 51, 506–514 (2011)CrossRefGoogle Scholar
  5. 5.
    Nau, W.M., Florea, M., Assaf, K.I.: Deep inside cucurbiturils: physical properties and volumes of their inner cavity determine the hydrophobic driving force for host-guest complexation. Isr. J. Chem. 51, 559–577 (2011)CrossRefGoogle Scholar
  6. 6.
    Florea, M., Nau, W.M.: Strong binding of hydrocarbons to cucurbituril probed by fluorescent dye displacement: a supramolecular gas-sensing ensemble. Angew. Chem. Int. Ed. 50, 9338–9342 (2011)CrossRefGoogle Scholar
  7. 7.
    Vinciguerra, B., Cao, L.P., Cannon, J.R., Zavalij, P.Y., Fenselau, C., Isaacs, L.: Synthesis and self-assembly processes of monofunctionalized cucurbit[7]uril. J. Am. Chem. Soc. 134, 13133–13140 (2012)CrossRefGoogle Scholar
  8. 8.
    Isaacs, L., Park, S.K., Liu, S.M., Ko, Y.H., Selvapalam, N., Kim, Y., Kim, H., Zavalij, P.Y., Kim, G.H., Lee, H.S., Kim, K.: The inverted cucurbit[n]uril family. J. Am. Chem. Soc. 127, 18000–18001 (2005)CrossRefGoogle Scholar
  9. 9.
    Huang, W.H., Liu, S.M., Zavalij, P.Y., Isaacs, L.: Nor-seco-cucurbit[10]uril exhibits homotropic allosterism. J. Am. Chem. Soc. 128, 14744–14745 (2006)CrossRefGoogle Scholar
  10. 10.
    Ma, D., Zavalij, P.Y., Isaacs, L.: Acyclic cucurbit[n]uril congeners are high affinity hosts. J. Org. Chem. 75, 4786–4795 (2010)CrossRefGoogle Scholar
  11. 11.
    Lewin, V., Rivollier, J., Coudert, S., Buisson, D.A., Baumann, D., Rousseau, B., Legrand, F.X., Kourilova, H., Berthault, P., Dognon, J.P., Heck, M.P., Huber, G.: Synthesis of cucurbit[6]uril derivatives and insights into their solubility in water. Eur. J. Org. Chem. 2013, 3857–3865 (2013)CrossRefGoogle Scholar
  12. 12.
    Nally, R., Isaacs, L.: Toward supramolecular polymers incorporating double cavity cucurbituril hosts. Tetrahedron 65, 7249–7258 (2009)CrossRefGoogle Scholar
  13. 13.
    Huang, W.-H., Zavalij, P.Y., Isaacs, L.: Nor-seco-cucurbit[n]uril molecular containers. Polym. Prepr. 51, 154–155 (2010)Google Scholar
  14. 14.
    Lemaur, V., Carroy, G., Poussigue, F., Chirot, F., De Winter, J., Isaacs, L., Dugourd, P., Cornil, J., Gerbaux, P.: Homotropic allosterism: in-depth structural analysis of the gas-phase noncovalent complexes associating a double-cavity cucurbit[n]uril-type host and size-selected protonated amino aompounds. ChemPlusChem 78, 959–969 (2013)CrossRefGoogle Scholar
  15. 15.
    El-Barghouthi, M.I., Assaf, K.I., Rawashdeh, A.M.M.: Molecular dynamics of methyl viologen-cucurbit[n]uril complexes in aqueous solution. J. Chem. Theory Comput. 6, 984–992 (2010)CrossRefGoogle Scholar
  16. 16.
    Rawashdeh, A.M.M., El-Barghouthi, M.I., Assaf, K.I., Al-Gharabli, S.I.: Complexation of N-methyl-4-(p-methyl benzoyl)-pyridinium methyl cation and its neutral analogue by cucurbit[7]uril and beta-cyclodextrin: a computational study. J. Incl. Phenom. Macrocycl. Chem. 64, 357–365 (2009)CrossRefGoogle Scholar
  17. 17.
    Gilson, M.K.: Stress analysis at the molecular level: a forced cucurbituril-guest dissociation Pathway. J. Chem. Theory Comput. 6, 637–646 (2010)CrossRefGoogle Scholar
  18. 18.
    Case, D.A., Darden, T.A., Cheatham, T.E., Simmerling, C.L., Wang, J., Duke, R.E., Luo, R., Walker, R.C., Zhang, W., Merz, K.M., Roberts, B., Wang, B., Hayik, S., Roitberg, A., Seabra, G., Kolossváry, I., Wong, K.F., Paesani, F., Vanicek, J., Liu, J., Wu, X., Brozell, S.R., Steinbrecher, T., Gohlke, H., Cai, Q., Ye, X., Wang, J., Hsieh, M.-J., Cui, G., Roe, D.R., Mathews, D.H., Seetin, M.G., Sagui, C., Babin, V., Luchko, T., Gusarov, S., Kovalenko, A., Kollman, P.A.: AMBER 11, University of California, San Francisco (2010)Google Scholar
  19. 19.
    Wang, J., Wolf, R.M., Caldwell, J.W., Kollman, P.A., Case, D.: Development and testing of a general amber force field. J. Comput. Chem. 25, 1157–1174 (2004)CrossRefGoogle Scholar
  20. 20.
    Wang, J., Wolf, R.M., Caldwell, J.W., Kollman, P.A., Case, D.: Erratum. J. Comput. Chem. 26, 114 (2005)CrossRefGoogle Scholar
  21. 21.
    Jakalian, A., Bush, B.L., Jack, D.B., Bayly, C.I.: Fast, efficient generation of high-quality atomic charges. AM1-BCC model: I. Method. J. Comput. Chem. 21, 132–146 (2000)CrossRefGoogle Scholar
  22. 22.
    Jorgensen, W., Chanrasekhar, J., Madura, J., Klein, M.L.: Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983)CrossRefGoogle Scholar
  23. 23.
    Darden, T., York, D., Pederson, L.: Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089 (1993)CrossRefGoogle Scholar
  24. 24.
    Ryckaert, J.P., Ciccotti, G., Berendsen, H.J.C.: Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 23, 327–341 (1977)CrossRefGoogle Scholar
  25. 25.
    Humphrey, W., Dalke, A., Schulten, K.: VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996)CrossRefGoogle Scholar
  26. 26.
    Honig, B., Nicholls, A.: Classical electrostatics in biology and chemistry. Science 268, 1144–1149 (1995)CrossRefGoogle Scholar
  27. 27.
    Jayaram, B., Sprous, D., Beveridge, D.L.: Solvation free energy of biomacromolecules: parameters for a modified generalized born model consistent with the amber force field. J. Phys. Chem. B 102, 9571–9576 (1998)CrossRefGoogle Scholar
  28. 28.
    Sitkoff, D., Sharp, K.A., Honig, B.: Accurate calculation of hydration free energies using macroscopic solvent models. J. Phys. Chem. 98, 1978–1988 (1994)CrossRefGoogle Scholar
  29. 29.
    Srinivasan, J., Cheatham, T.E., Cieplak, P., Kollman, P.A., Case, D.A.: Continuum solvent studies of the stability of DNA, RNA and phosphoramidate-DNA helices. J. Am. Chem. Soc. 120, 9401–9409 (1998)CrossRefGoogle Scholar
  30. 30.
    Massova, I., Kollman, P.A.: Computational alanine scanning to probe protein-protein interactions: a novel approach to evaluate binding free energies. J. Am. Chem. Soc. 121, 8133–8143 (1999)CrossRefGoogle Scholar
  31. 31.
    Wu, Y., Cao, Z., Yi, H., Jiang, D., Mao, X., Liu, H., Li, W.: Simulation of the interaction between ScyTx and small conductance calcium-activated potassium channel by docking and MM-PBSA. Biophys. J. 87, 105–112 (2004)CrossRefGoogle Scholar
  32. 32.
    Sanner, M.F., Olson, A.J., Spehner, J.C.: Reduced surface: an efficient way to compute molecular surfaces. Biopolymers 38, 305–320 (1996)CrossRefGoogle Scholar
  33. 33.
    Hou, T., Guo, S., Xu, X.: Predictions of binding of a diverse set of ligands to gelatinase-A by a combination of molecular dynamics and continuum solvent models. J. Phys. Chem. B 106, 5527–5535 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Musa I. El-Barghouthi
    • 1
  • Hamzeh M. Abdel-Halim
    • 1
  • Feryal J. Haj-Ibrahim
    • 1
  • Khaled Bodoor
    • 2
  • Khaleel I. Assaf
    • 3
  1. 1.Department of ChemistryThe Hashemite UniversityZarqaJordan
  2. 2.Department of PhysicsThe University of JordanAmmanJordan
  3. 3.School of Engineering and ScienceJacobs UniversityBremenGermany

Personalised recommendations