Supramolecular compounds with coordination polymeric chains of Ag ions, p-sulfonatocalix[4]arene and ethylenediamine

  • Jianxin Li
  • Shengdong Zhang
  • Ya-Guang Chen
  • Xiguang Du
  • Helong Yu
  • Jing Yu
Original Article


Complexes (en)0.5[{Ag2(en)2}{Ag4(en)4}2(SC4)2]·17H2O(1) and [Ag5(en)5(H2O)2][Ag8(en)8(H2O)2(SC4)2][Na(H2O)4][Na6(H2O)16(SC4)2]·50H2O (2), SC4 = p-sulfonatocalix[4]arene pentaanion, en = ethylenediamine, were synthesized from sodium p-sulfonatocalix[4]arene (Na4SC4), Ag+ ions in aqueous solution of pH = 11 at room temperature. Single-crystal structures were determined by X-ray diffraction. In 1, two 20-membered macrocycles consisting of four Ag+ ions and four en molecules are combined together by weak Ag–Ag metal bonds in which the Ag+ ions are coordinated by sulfonate oxygen atoms of SC4 with a weak Ag–O interaction. Two Ag+ ions in a ten-membered ring, Ag2(en)2, link two hydroxyl oxygen atoms of two SC4, forming a chain extending along the a-axis. In 2 four Ag+ ions and four en molecules form a chain with SC4 as pendants through Ag–O interaction. Another SC4 coordinates to three Na+ ions, forming a Na3-SC4-H2O chain through sharing a water molecule. The third chain is formed by three Ag+ ions and three en molecules. These chains stretch towards different directions forming a 3D supramolecular architecture stabilized by hydrogen bonds.


Supramolecular compound p-Sulfonatocalix[4]arene Silver Ethylenediamine Crystal structure Weak Ag–Ag metal bond 

Supplementary material

10847_2015_478_MOESM1_ESM.docx (1.9 mb)
Supplementary material 1 (DOCX 1939 kb)


  1. 1.
    Atwood, J.L., Bott, S.G., Morley, S.D.: Novel layer structure of sodium calix[4]arenesulfonate complexes—a class of organic clay mimics. Angew. Chem. Int. Ed. Engl. 27, 1361–1362 (1988)CrossRefGoogle Scholar
  2. 2.
    Dalgarno, S.J., Atwood, J.L., Raston, C.L.: Host–guest complexes with p-sulfonatocalix[4,5]arenas charged crown ethers snd lanthanides: factors affecting molecular capsule formation. Cryst. Growth Des. 6, 174–180 (2006)CrossRefGoogle Scholar
  3. 3.
    Dalgarno, S.J., Atwood, J.L., Raston, C.L.: Structural versatility in praseodymium complexes of p-Sulfonatocalix[4]arene. Cryst. Growth Des. 7, 1762–1770 (2007)CrossRefGoogle Scholar
  4. 4.
    Liu, Y., Chen, K., Guo, S.-J., Li, Q., Song, H.-B.: Comparable inclusion and aggregation structures of p-Sulfonatothiacalix[4]arene and p-sulfonatocalix[4]arene upon complexation with quinoline guests. Cryst. Growth Des. 7, 2601–2608 (2007)CrossRefGoogle Scholar
  5. 5.
    Ling, I., Alias, Y., Sobolev, A.N., Raston, C.L.: p-Sulfonatocalix[4]arene–pyrrolidinium complexation in building multicomponent layered arrays. Cryst. Growth Des. 10, 1312–1318 (2010)CrossRefGoogle Scholar
  6. 6.
    Zhang, J., Guo, D., Liu, Y.: Solid-state supramolecular architectures by p-sulfonatocalix[4]arene with bispyridinium derivatives. Chin. J. Chem. 28, 1575–1579 (2010)CrossRefGoogle Scholar
  7. 7.
    Francisco, V., Basilio, N., García-Río, L.: Counterion exchange as a decisive factor in the formation of host:guest complexes by p-sulfonatocalix[4]arene. J. Phys. Chem. B 116, 5308–5315 (2012)CrossRefGoogle Scholar
  8. 8.
    Qian, H., Guo, D.-S., Liu, Y.: p-Sulfonatocalix[4]arene supramolecular polymers: formation by host–guest interactions and light response. Asian J. Org. Chem. 1, 155–159 (2012)CrossRefGoogle Scholar
  9. 9.
    Basílio, N., Piñeiro, Á., Silva, J.P.D., García-Río, L.: Cooperative assembly of discrete stacked aggregates driven by supramolecular host–guest complexation. J. Org. Chem. 78, 9113–9119 (2013)CrossRefGoogle Scholar
  10. 10.
    Sun, R., Xue, C., Ma, X., Gao, M., Tian, H., Li, Q.: Light-driven linear helical supramolecular polymer formed by molecular-recognition-directed self-assembly of bis(p-sulfonatocalix[4]arene) and pseudorotaxane. J. Am. Chem. Soc. 135, 5990–5993 (2013)CrossRefGoogle Scholar
  11. 11.
    Zhao, H.-X., Guo, D.-S., Liu, Y.: Binding behaviors of p-Sulfonatocalix[4]arene with gemini guests. J. Phys. Chem. B 117, 1978–1987 (2013)CrossRefGoogle Scholar
  12. 12.
    Hardie, M.J., Raston, C.L.: Russian doll assembled superanion capsule–metal ion complexes: combinatorial supramolecular chemistry in aqueous media. J. Chem. Soc., Dalton Trans. 15, 2483–2492 (2000)CrossRefGoogle Scholar
  13. 13.
    Nichols, P.J., Raston, C.L., Steed, J.W.: Engineering of porous π-stacked solids using mechanochemistry. Chem. Commun. 12, 1062–1063 (2001)CrossRefGoogle Scholar
  14. 14.
    Dalgarno, J., Raston, C.L.: Capture of di-protonated [2.2.2]cryptand in the cavity of two p-sulfonato calixarenes as part of 2-D bi-layer lanthanide coordination polymers. Chem. Commun. 19, 2216–2217 (2002)CrossRefGoogle Scholar
  15. 15.
    Liu, Y., Guo, D.S., Zhang, H.Y., Kang, S., Song, H.B.: Diverse conformation and extended structure of p-Sulfonatothiacalix[4]arene manipulated by guest molecules. Cryst. Growth Des. 6, 1399–1406 (2006)CrossRefGoogle Scholar
  16. 16.
    Guo, D.S., Su, X., Liu, Y.: Benzyl effects of supramolecular architectures constructed by p-sulfonatocalix[4]arene and viologen guests: from simple 2:1 complex to polymeric capsules. Cryst. Growth Des. 8, 3514–3517 (2008)CrossRefGoogle Scholar
  17. 17.
    Webb, H.R., Hardie, M.J., Raston, C.L.: Scandium (III) coordination polymers containing capsules based on two p-sulfonatocalix[4]arenas. Chem. Eur. J. 7, 3616–3620 (2001)CrossRefGoogle Scholar
  18. 18.
    Liu, C., Luo, F., Liao, W., Li, D., Wang, X., Dronskowski, R.: pH-Dependent syntheses and structures of two copper(II)/phenanthroline/p-sulfonatocalix[4]arene supramolecular compounds with 1D water-filled channels. Cryst. Growth Des. 7, 2282–2285 (2007)CrossRefGoogle Scholar
  19. 19.
    Bi, Y., Liao, W., Zhang, H.: Assembly of supramolecular compounds with water-soluble calix[4]arenes. Cryst. Growth Des. 8, 3630–3635 (2008)CrossRefGoogle Scholar
  20. 20.
    Mattoussi, N., Pilet, G., Novitchi, G., Meganem, F., Luneau, D.: Synthesis, crystal structure, and magnetic properties of a bis-dinuclear oxo-bridged iron(iii) complex with p-sulfonatocalix[4]arene. Eur. J. Inorg. Chem. 14, 2652–2656 (2013)CrossRefGoogle Scholar
  21. 21.
    Wu, M., Yuan, D., Han, L., Wu, B., Xu, Y. and Hong, M.: Inclusion of metal complexes into cavities of 2d coordination networks built from p-sulfonatothiacalix[4]arene tetranuclear clusters. Eur. J. Inorg. Chem. 526–530 (2006)Google Scholar
  22. 22.
    Liao, W., Bi, Y., Gao, S., Li, D., Zhang, H., Dronskowski, R.: Lanthanide-hinged calixarene bicapsules: discrete hexanuclear LnIII/phenanthroline/p-sulfonatocalix[4]arene oligomers (Ln = Gd, Tb). Eur. J. Inorg. Chem. 19, 2959–2962 (2008)CrossRefGoogle Scholar
  23. 23.
    Skripacheva, V., Mustafina, A., Rusakova, N., Yanilkin, V., Nastapova, N., Amirov, R., Burilov, V., Zairov, R., Kost, S., Solovieva, S., Korovin, Y., Antipin, I., Konovalov, A.: Heterometallic CoIII–LnIII (Ln = Gd, Tb, Dy) complexes on a p-sulfonatothiacalix[4]arene platform exhibiting redox-switchable metal-to-metal energy transfer. Eur. J. Inorg. Chem. 25, 3957–3963 (2008)CrossRefGoogle Scholar
  24. 24.
    Zheng, G., Zhang, F., Lia, Y., Zhang, H.: Guest inducing p-sulfonatocalix[4]arene into three-dimensional capsule architecture and a mixed A-B double layer framework. CrystEngComm 10, 1560–1564 (2008)CrossRefGoogle Scholar
  25. 25.
    Liao, W.P., Liu, C., Wang, X., Zhu, G.S., Zhao, X.J., Zhang, H.J., Liao, W.P.: 3D metal–organic frameworks incorporating water-soluble tetra-p-sulfonatocalix[4]arene. CrystEngComm 11, 2282–2284 (2009)CrossRefGoogle Scholar
  26. 26.
    Zheng, G., Fan, W., Song, S., Guo, H., Zhang, H.: Guests inducing p-sulfonatocalix[4]arenes into nanocapsule and layer structure. J. Solid State Chem. 183, 1457–1463 (2010)CrossRefGoogle Scholar
  27. 27.
    Gándara, F., Gutiérrez-Puebla, E., Iglesias, M., Snejko, N., Monge, M.Á.: Isolated hexanuclear hydroxo lanthanide secondary building units in a rare-earth polymeric framework based on p-sulfonatocalix[4]arene. Cryst. Growth Des. 10, 128–134 (2010)CrossRefGoogle Scholar
  28. 28.
    Wang, X., Xiong, Y., Liao, W.: Two lanthanide(III)/phenanthroline/p-sulfonatocalix[4]arene supramolecular compounds with 1D ‘molecular capsule’ chains. J. Mol. Struct. 967, 20–24 (2010)CrossRefGoogle Scholar
  29. 29.
    Mislin, G., Graf, E., Hoddeini, M.W., Cian, A.D., Kyritsakas, N., Fischer, J.: Synthesis and structural analysis of an infinite linear coordination network formed by the self-assembly of tetracyanocalix[4]arene ligands and silver cations. Chem. Commun. 22, 2545–2546 (1998)CrossRefGoogle Scholar
  30. 30.
    Zheng, G.-L., Zhang, H.-J., Song, S.-Y., Li, Y.-Y., Guo, H.-D.: Self-assembly of p-sulfonatocalix[4]arene and a Ag–hmt coordination polymer into a porous structure. Eur. J. Inorg. Chem. 11, 1756–1759 (2008)CrossRefGoogle Scholar
  31. 31.
    Graf, K.E., Hosseini, M.W., Cian, A.D., Fischer, J., Kleina, C.: Metallatubulane: synthesis and structural analysis of an infinite tubular coordination network formed by the self-assembly of a tetracyanocyclophane and silver cations. Chem. Commun. 3, 239–240 (2000)Google Scholar
  32. 32.
    Wu, M., Yuan, D., Huang, Y., Wei, W., Gao, Q., Jiang, F., Hong, M.: Captures of Copper(II) − 2,2′-bpy complexes in conformation-fixed homometallic anionic dimers and heterometallic clusters. Cryst. Growth Des. 7, 1446–1451 (2007)CrossRefGoogle Scholar
  33. 33.
    Su, C.-Y., Kang, B.-S., Du, C.-X., Yang, Q.-C., Mak, T.C.W.: Formation of mono-, bi-, tri-, and tetranuclear Ag(I) complexes of C 3-symmetric tripodal benzimidazole ligands. Inorg. Chem. 39, 4843–4849 (2000)CrossRefGoogle Scholar
  34. 34.
    Loo, K., Degtyareva, N., Park, J., Sengupta, B., Reddish, M., Rogers, C.C., Bryant, A., Petty, J.T.: Ag+-mediated assembly of 5′-guanosine monophosphate. J. Phys. Chem. B 114, 4320–4326 (2010)CrossRefGoogle Scholar
  35. 35.
    Sailaja, S., Rajasekharan, M.V.: Synthesis and structure of coordination polymers of Ag(I) with isomeric (aminomethyl)pyridines. formation of a novel circular helicate and 2-D networks via Ag···Ag contacts and coordination shell expansion under anion control. Inorg. Chem. 42, 5675–5684 (2003)CrossRefGoogle Scholar
  36. 36.
    Liu, Y., Pan, M., Yang, Q.-Y., Fu, L., Li, K., Wei, S.-C., Su, C.-Y.: Dual-emission from a single-phase Eu–Ag metal-organic framework: an alternative way to get white-light phosphor. Chem. Mater. 24, 1954–1960 (2012)CrossRefGoogle Scholar
  37. 37.
    Abu-Youssef, M.A.M., Soliman, S.M., Langer, V., Gohar, Y.M., Hasanen, A.A., Makhyoun, M.A., Zaky, A.H., Öhrström, L.R.: Synthesis, crystal structure, quantum chemical calculations, DNA interactions, and antimicrobial activity of [Ag(2-amino-3-methylpyridine)2] NO3 and [Ag(pyridine-2-carboxaldoxime)NO3]. Inorg. Chem. 49, 9788–9797 (2010)CrossRefGoogle Scholar
  38. 38.
    Isab, A.A., Wazeer, M.I.M., Fettouhi, M., Al-Maythalony, B.A., Al-Arfaj, A.R., Al-Zamil, N.O.: Solid state and solution NMR, X-ray and antimicrobial studies of 1:1 and 2:1 complexes of silver(I) cyanide with alkanediamine ligands. Inorg. Chim. Acta 360, 3719–3726 (2007)CrossRefGoogle Scholar
  39. 39.
    Liu, Z.-D., Zhu, H.-L.: Catena-poly[[μ-ethylenediamine-κ2 N:N’-bis[(ethylenediamine-κ2 N, N’)silver(I)] bis[silver(I)-μ-barbiturato-κ2 N:N’]] dihydrate]. Acta Cryst. E60, m1883–m1885 (2004)Google Scholar
  40. 40.
    Wang, Y.-T., Wang, Y.-L., Wang, J.-G., Fan, Y.-T.: μ-Ethylenediamine-κ2 N:N’-bis[(quinoline-2-carboxylato-κ2 N, O)silver(I)] tetrahydrate. Acta Cryst. E62, m1927–m1929 (2006)Google Scholar
  41. 41.
    Sun, D., Yan, Z.-H.: A novel one-dimensional silver cylinder stabilized by mixed 2-mercaptobenzoic acid and ethylene-diamine ligands. Acta Cryst. C68, m229–m232 (2012)Google Scholar
  42. 42.
    Usman, A., Fun, H.-K., Chantrapromma, S., Zhu, H.-L., Wang, X.-J.: Polymeric structure of (ethylenediamine)silver(I) 3-nitrobenzoate monohydrate. Acta Cryst. C59, m97–m99 (2003)Google Scholar
  43. 43.
    Zhu, H.-L., Wang, X.-J., Meng, F.-J., Liu, X.-Y.: Polymeric (ethylenediamine)silver(I) 2,4,6-trinitrophenolate. Acta Cryst. E59, m698–m699 (2003)Google Scholar
  44. 44.
    You, Z.-L., Yang, L., Zou, Y., Zeng, W.-J., Liu, W.-S. and Zhu, H.-L.:catena-Poly[[silver(I)-μ-ethane-1,2-diamine-κ2 N:N’] 3-fluorobenzoate monohydrate]. Acta Cryst. C60, m117-m118 (2004)Google Scholar
  45. 45.
    Zhu, H.-L., Sun, Z.-Y., Rong, N.-N., Zhang, B., Zhang, M., Li, Y.: catena-Poly[[silver(I)-μ-1,2-diaminoethane] hexafluoroarsenate]. Acta Cryst. E59, m906–m907 (2003)Google Scholar
  46. 46.
    Gutsche, C.D., Dhawan, B., Leonis, M.: p-tert-Butylcalix[6]arene. Org. Synth. 68, 238–239 (1990)CrossRefGoogle Scholar
  47. 47.
    Gutsche, C.D., Lin, L.-G.: Calixarenes 12: the synthesis of functionalized calixarenes. Tetrahedron 42, 1633–1640 (1986)CrossRefGoogle Scholar
  48. 48.
    Atwood, J.L., Orr, G.W., Means, N.C.: Metal ion complexes of water-soluble calix[4]arenes. Inorg. Chem. 31, 603–606 (1992)CrossRefGoogle Scholar
  49. 49.
    Higashi, T.: Program for absorption correction. Rigaku Corporation, Tokyo (1995)Google Scholar
  50. 50.
    Sheldrick, G.M.: SHELXS-97. A program for automatic solution of crystal structure. university of goettingen, Germany (1997)Google Scholar
  51. 51.
    Sheldrick, G.M.: SHELXL-97. A programs for crystal structure refinement; university of goettingen, Germany (1997)Google Scholar
  52. 52.
    Xiong, K., Wu, M., Zhang, Q., Wei, W., Yang, M., Jiang, F., Hong, M.:1D Infinite silver(I) chains reside in the big cavities built by the novel p-sulfonatocalix[4]arene-trisilver blocks. Chem. Commun. 1840–1842 (2009)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Jianxin Li
    • 1
  • Shengdong Zhang
    • 1
  • Ya-Guang Chen
    • 1
  • Xiguang Du
    • 1
  • Helong Yu
    • 1
  • Jing Yu
    • 1
  1. 1.Faculty of ChemistryNortheast Normal UniversityChangchunPeople’s Republic of China

Personalised recommendations