Enantioseparation of phenylsuccinic acid enantiomers based on aqueous two-phase system with ethanol/ammonium sulfate: phase diagrams optimization and partitioning experiments

  • Jun Wang
  • Xiaoqing Chen
  • Feipeng Jiao
Original Article


In the study herein we focused on enantioseparation of phenylsuccinic acid (PSA) enantiomers using an aqueous two-phase system (ATPS) composed of ethanol and ammonium sulfate. Based on phase-forming points and salting-out points, a modified phase diagram of ethanol/ammonium sulfate system with three distinct phase areas, including homogeneous area, ATPS area and salting-out area, has been constructed experimentally. The ATPS optimization and evaluation of chiral separation efficiency for PSA enantiomers have been investigated thoroughly. A hydrophilic chiral selector, hydroxypropyl-β-cyclodextrin (HP-β-CD), which has good chiral recognition ability for R-PSA, was added into bottom phase. The chiral separation efficiencies, namely distribution coefficients and separation factor, were affected by various process variables, including phase compositions of ATPS, concentrations of HP-β-CD and PSA enantiomers, pH value and operational temperature. Under the optimum conditions, separation factor could reach 1.42 after just one step extraction. This environmentally benign chiral separation technique opens up new possibilities for preparative separation of other racemic compounds at a large-scale.


Aqueous two-phase system Enantioseparation Phenylsuccinic acid enantiomers Hydroxypropyl-β-cyclodextrin Phase diagram Optimization 



This work was supported by the National Natural Science Foundation of China (No. 21276282 and No. 21476269) and Natural Science Foundation of Hunan province (No. 14JJ2014).


  1. 1.
    Horvath, J.D., Koritnik, A., Kamakoti, P., Sholl, D.S., Gellman, A.J.: Enantioselective separation on a naturally chiral surface. J. Am. Chem. Soc. 126, 14988–14994 (2004)CrossRefGoogle Scholar
  2. 2.
    Kolemen, S., Cakmak, Y., Kostereli, Z., Akkaya, E.U.: Atropisomeric dyes: axial chirality in orthogonal BODIPY oligomers. Org. Lett. 16, 660–663 (2014)CrossRefGoogle Scholar
  3. 3.
    Maier, N.M., Franco, P., Lindner, W.: Separation of enantiomers: needs, challenges, perspectives. J. Chromatogr. A 906, 3–33 (2001)CrossRefGoogle Scholar
  4. 4.
    Tang, W., Muderawan, I.W., Ng, S.-C., Chan, H.S.O.: Enantioselective separation in capillary electrophoresis using a novel mono-6A-propylammonium-β-cyclodextrin as chiral selector. Anal. Chim. Acta 555, 63–67 (2006)CrossRefGoogle Scholar
  5. 5.
    Gavioli, E., Maier, N.M., Minguillón, C., Lindner, W.: Preparative enantiomer separation of dichlorprop with a cinchona-derived chiral selector employing centrifugal partition chromatography and high-performance liquid chromatography: a comparative study. Anal. Chem. 76, 5837–5848 (2004)CrossRefGoogle Scholar
  6. 6.
    Chen, B., Deng, J., Yang, W.: Hollow two-layered chiral nanoparticles consisting of optically active helical polymer/silica: preparation and application for enantioselective crystallization. Adv. Funct. Mater. 21, 2345–2350 (2011)CrossRefGoogle Scholar
  7. 7.
    Guangyou, Z., Yuquing, L., Zhaohui, W., Nohira, H., Hirose, T.: Resolution of β-aminoalcohols and 1,2-diamines using fractional crystallization of diastereomeric salts of dehydroabietic acid. Tetrahedron Asymmetry 14, 3297–3300 (2003)CrossRefGoogle Scholar
  8. 8.
    Maftouh, M., Granier-Loyaux, C., Chavana, E., Marini, J., Pradines, A., Heyden, Y.V., Picard, C.: Screening approach for chiral separation of pharmaceuticals: Part III. Supercritical fluid chromatography for analysis and purification in drug discovery. J. Chromatogr. A 1088, 67–81 (2005)CrossRefGoogle Scholar
  9. 9.
    Binanzer, M., Hsieh, S.-Y., Bode, J.W.: Catalytic kinetic resolution of cyclic secondary amines. J. Am. Chem. Soc. 133, 19698–19701 (2011)CrossRefGoogle Scholar
  10. 10.
    Sunsandee, N., Leepipatpiboon, N., Ramakul, P., Pancharoen, U.: The selective separation of (S)-amlodipine via a hollow fiber supported liquid membrane: Modeling and experimental verification. Chem. Eng. J. 180, 299–308 (2012)CrossRefGoogle Scholar
  11. 11.
    Schmid, M., Gübitz, G.: Enantioseparation by chromatographic and electromigration techniques using ligand-exchange as chiral separation principle. Anal. Bioanal. Chem. 400, 2305–2316 (2011)CrossRefGoogle Scholar
  12. 12.
    Huang, B.-Y., Chen, Y.-C., Wang, G.-R., Liu, C.-Y.: Preparation and evaluation of a monolithic molecularly imprinted polymer for the chiral separation of neurotransmitters and their analogues by capillary electrochromatography. J. Chromatogr. A 1218, 849–855 (2011)CrossRefGoogle Scholar
  13. 13.
    Lacour, J., Goujon-Ginglinger, C., Torche-Haldimann, S., Jodry, J.J.: Efficient enantioselective extraction of tris(diimine)ruthenium(ii) complexes by chiral, lipophilic TRISPHAT anions. Angew. Chem. Int. Ed. 39, 3695–3697 (2000)CrossRefGoogle Scholar
  14. 14.
    Colera, M., Costero, A.M., Gaviña, P., Gil, S.: Synthesis of chiral 18-crown-6 ethers containing lipophilic chains and their enantiomeric recognition of chiral ammonium picrates. Tetrahedron Asymmetry 16, 2673–2679 (2005)CrossRefGoogle Scholar
  15. 15.
    Tan, B., Luo, G., Wang, J.: Extractive separation of amino acid enantiomers with co-extractants of tartaric acid derivative and Aliquat-336. Sep. Purif. Technol. 53, 330–336 (2007)CrossRefGoogle Scholar
  16. 16.
    Tang, K., Zhang, P., Li, H.: Experimental and model study on the multiple chemical equilibrium for reactive extraction of ibuprofen enantiomers with HP-β-CD as hydrophilic selector. Process Biochem. 46, 1817–1824 (2011)CrossRefGoogle Scholar
  17. 17.
    Snyder, S.E., Carey, J.R., Pirkle, W.H.: Biphasic enantioselective partitioning studies using small-molecule chiral selectors. Tetrahedron 61, 7562–7567 (2005)CrossRefGoogle Scholar
  18. 18.
    Verkuijl, B.J.V., Minnaard, A.J., de Vries, J.G., Feringa, B.L.: Chiral separation of underivatized amino acids by reactive extraction with palladium–BINAP complexes. J. Org. Chem. 74, 6526–6533 (2009)CrossRefGoogle Scholar
  19. 19.
    Tang, F., Zhang, Q., Ren, D., Nie, Z., Liu, Q., Yao, S.: Functional amino acid ionic liquids as solvent and selector in chiral extraction. J. Chromatogr. A 1217, 4669–4674 (2010)CrossRefGoogle Scholar
  20. 20.
    Tang, K., Song, L., Liu, Y., Pan, Y., Jiang, X.: Separation of flurbiprofen enantiomers by biphasic recognition chiral extraction. Chem. Eng. J. 158, 411–417 (2010)CrossRefGoogle Scholar
  21. 21.
    Sellergren, B., Ekberg, B., Albertsson, P.-Å., Mosbach, K.: Preparative chiral separation in an aqueous two-phase system by a few counter-current extractions. J. Chromatogr. A 450, 277–280 (1988)CrossRefGoogle Scholar
  22. 22.
    Tang, K., Yi, J., Liu, Y., Jiang, X., Pan, Y.: Enantioselective separation of R, S-phenylsuccinic acid by biphasic recognition chiral extraction. Chem. Eng. Sci. 64, 4081–4088 (2009)CrossRefGoogle Scholar
  23. 23.
    Li, Z., Teng, H., Xiu, Z.: Aqueous two-phase extraction of 2,3-butanediol from fermentation broths using an ethanol/ammonium sulfate system. Process Biochem. 45, 731–737 (2010)CrossRefGoogle Scholar
  24. 24.
    Azevedo, A.M., Rosa, P.A.J., Ferreira, I.F., Aires-Barros, M.R.: Chromatography-free recovery of biopharmaceuticals through aqueous two-phase processing. Trends Biotechnol. 27, 240–247 (2009)CrossRefGoogle Scholar
  25. 25.
    Li, Z., Teng, H., Xiu, Z.: Extraction of 1,3-propanediol from glycerol-based fermentation broths with methanol/phosphate aqueous two-phase system. Process Biochem. 46, 586–591 (2011)CrossRefGoogle Scholar
  26. 26.
    Vázquez-Villegas, P., Aguilar, O., Rito-Palomares, M.: Study of biomolecules partition coefficients on a novel continuous separator using polymer-salt aqueous two-phase systems. Sep. Purif. Technol. 78, 69–75 (2011)CrossRefGoogle Scholar
  27. 27.
    Wu, Y., Wang, Y., Zhang, W., Han, J., Liu, Y., Hu, Y., Ni, L.: Extraction and preliminary purification of anthocyanins from grape juice in aqueous two-phase system. Sep. Purif. Technol. 124, 170–178 (2014)CrossRefGoogle Scholar
  28. 28.
    Azevedo, A.M., Gomes, A.G., Rosa, P.A.J., Ferreira, I.F., Pisco, A.M.M.O., Aires-Barros, M.R.: Partitioning of human antibodies in polyethylene glycol–sodium citrate aqueous two-phase systems. Sep. Purif. Technol. 65, 14–21 (2009)CrossRefGoogle Scholar
  29. 29.
    Chen, X.-Q., Dong, Q.-L., Yu, J.-G., Jiao, F.-P.: Extraction of tryptophan enantiomers by aqueous two-phase systems of ethanol and (NH4)2SO4. J. Chem. Technol. Biotechnol. 88, 1545–1550 (2013)CrossRefGoogle Scholar
  30. 30.
    Yang, L., Huo, D., Hou, C., He, K., Lv, F., Fa, H., Luo, X.: Purification of plant-esterase in PEG1000/NaH2PO4 aqueous two-phase system by a two-step extraction. Process Biochem. 45, 1664–1671 (2010)CrossRefGoogle Scholar
  31. 31.
    Frerix, A., Müller, M., Kula, M.-R., Hubbuch, J.: Scalable recovery of plasmid DNA based on aqueous two-phase separation. Biotechnol. Appl. Biochem. 42, 57–66 (2005)CrossRefGoogle Scholar
  32. 32.
    Guedes de Andrade, E., de Siqueira Cardoso Silva, M., Brandão Haga, R., Carvalho Santos, V., Pessoa, A., Rangel-Yagui, C.D.O.: Extraction of clavulanic acid using aqueous two-phase micellar system. Biotechnol. Appl. Biochem. 58, 103–108 (2011)Google Scholar
  33. 33.
    Wade, K.L., Ito, Y., Ramarathnam, A., Holtzclaw, W.D., Fahey, J.W.: Purification of active myrosinase from plants by aqueous two-phase counter-current chromatography. Phytochem. Anal. 26, 47–53 (2015)CrossRefGoogle Scholar
  34. 34.
    Bi, P.-Y., Chang, L., Mu, Y.-L., Liu, J.-Y., Wu, Y., Geng, X., Wei, Y.: Separation and concentration of baicalin from Scutellaria baicalensis Georgi extract by aqueous two-phase flotation. Sep. Purif. Technol. 116, 454–457 (2013)CrossRefGoogle Scholar
  35. 35.
    Arai, T., Kuroda, H.: Distribution behavior of some drug enantiomers in an aqueous two-phase system using counter-current extraction with protein. Chromatographia 32, 56–60 (1991)CrossRefGoogle Scholar
  36. 36.
    Chen, X., Liu, L., Jiao, F., Wang, Z.: Extraction of phenylalanine enantiomers by aqueous two phase systems containing combinatorial chiral selector. Chin. J. Chem. 30, 965–969 (2012)CrossRefGoogle Scholar
  37. 37.
    Xing, J.-M., Li, F.-F.: Chiral separation of mandelic acid by temperature-induced aqueous two-phase system. J. Chem. Technol. Biotechnol. 87, 346–350 (2012)CrossRefGoogle Scholar
  38. 38.
    Han, J., Wang, Y., Yu, C., Li, C., Yan, Y., Liu, Y., Wang, L.: Separation, concentration and determination of chloramphenicol in environment and food using an ionic liquid/salt aqueous two-phase flotation system coupled with high-performance liquid chromatography. Anal. Chim. Acta 685, 138–145 (2011)CrossRefGoogle Scholar
  39. 39.
    Loftsson, T., Brewster, M.E.: Cyclodextrins as functional excipients: methods to enhance complexation efficiency. J. Pharm. Sci. 101, 3019–3032 (2012)CrossRefGoogle Scholar
  40. 40.
    Zhao, S., Liu, Y.-M.: Electrophoretic separation of tryptophan enantiomers in biological samples. Electrophoresis 22, 2769–2774 (2001)CrossRefGoogle Scholar
  41. 41.
    Tang, K., Miao, J., Zhou, T., Song, L.: Equilibrium studies on reactive extraction of naproxen enantiomers using hydrophilic β-cyclodetrin derivatives extractants. J. Incl. Phenom. Macrocycl. Chem. 69, 213–220 (2011)CrossRefGoogle Scholar
  42. 42.
    Owens, P., Fell, A., Coleman, M., Berridge, J.: Complexation of voriconazole stereoisomers with neutral and anionic derivatised cyclodextrins. J. Incl. Phenom. Macrocycl. Chem. 38, 133–151 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringCentral South UniversityChangshaChina
  2. 2.Collaborative Innovation Center of Resource-Conserving & Environment-Friendly Society and Ecological CivilizationChangshaChina

Personalised recommendations