Complexation of all-cis cyclo(L-Pro)3 and alkali metal cations: a DFT study

  • Zahra Jafari Chermahini
  • Alireza Najafi Chermahini
  • Hossein A. Dabbagh
  • Abbas Teimouri
Original Article


We studied the complexation of cyclo(L-Pro)3 with alkali metal cations (Li+, Na+, K+, Rb+ and Cs+) in the gas phase using density functional theory (DFT) calculations. The complexes were optimized at B3LYP/6-31+G(d) and CAM-B3LYP/6-31+G(d) levels of theory. The binding energy of M+-cyclo(L-Pro)3 complexes was increased in the following order: Li+ > Na+ > K+ > Rb+ > Cs+. Natural bond orbital (NBO) analysis at B3LYP/6-31+G (d) level was performed on the optimized geometries. These results indicated that the complexation in M+-cyclo(L-Pro)3 complexes, was caused by the lone pair electrons of electron donating oxygen atoms and the LP* orbitals of alkali cations. The electron density at bond critical points was consistent with the binding energy of M+-cyclo(L-Pro)3 complexes.


Cyclic peptide Alkali metal cations Host–Guest complex DFT AIM 



We would like to acknowledge the Isfahan University of Technology for the financial support of this work.

Supplementary material

10847_2015_476_MOESM1_ESM.docx (55 kb)
Supplementary material 1 (DOCX 54 kb)


  1. 1.
    Chen, G.J., Su, S., Liu, R.Z.: Theoretical studies of monomer and dimer of cyclo[(-1-phe1d-ala2-)n] and cyclo [(-1-phe1-d-MeN-Ala2-)n] (n = 3-6). J. Phys. Chem. B. 106, 1570–1575 (2002)CrossRefGoogle Scholar
  2. 2.
    Teranishi, M., Okamoto, H., Takeda, K., Nomura, K., Nakano, A., Kalia, R.K.: Vashishta, Shimojo, P. F.: Molecular dynamic approach to the conformational transition in peptide nanorings and nanotubes. J. Phys. Chem. B. 113, 1473–1484 (2009)CrossRefGoogle Scholar
  3. 3.
    Hartgerink, J.D., Granja, J.R., Milligan, R.A., Ghadiri, M.R.: Self-assembling peptide nanotubes. J. Am. Chem. Soc. 118, 43–50 (1996)CrossRefGoogle Scholar
  4. 4.
    Tan, H.W., Qu, W.W., Chen, G.J., Liu, R.Z.: Theoretical investigation of the self-assembly of cyclo[(-β3-HGly)4-]. Chem. Phys. Lett. 369, 556–562 (2003)CrossRefGoogle Scholar
  5. 5.
    Poteau, R., Trinquier, G.: All-cis cyclic peptides. J. Am. Chem. Soc. 127, 13875–13889 (2005)CrossRefGoogle Scholar
  6. 6.
    Boyle, T.P., Bremner, J.P., Coates, J., Deadman, J., Keller, P.A.: New cyclic peptides via ring-closing metathesis reactions and their anti-bacterial activities. Tetrahedron 64, 11270–11290 (2008)CrossRefGoogle Scholar
  7. 7.
    Cheng, L., Naumann, T.A., Horswill, A.R., Hong, S.-J., Venters, B.J., Tomsho, J.W., Benkovic, S.J., Keiler, K.C.: Discovery of antibacterial cyclic peptides that inhibit the ClpXP protease. Protein Sci. 16, 1535–1542 (2007)CrossRefGoogle Scholar
  8. 8.
    Femandez-Lopez, S., Kim, H.-S., Choi, B.C., Delgado, M., Granja, J.R., Khasanov, A., Kraehenbuehl, K., Long, G., Weinberger, D.A., Wilcoxen, K.M., Ghadiri, M.R.: Antibacterial agents based on the cyclic D, L-a-peptide architecture. Nature 412, 452–455 (2001)CrossRefGoogle Scholar
  9. 9.
    Matsumoto, T., Nishimura, K., Takeya, K.: New Cyclic Peptides from Citrus medica var. sarcodactylis SWINGLE. Chem. Pharm. Bull. 50, 857–860 (2002)CrossRefGoogle Scholar
  10. 10.
    Maryanoff, B.E., Greco, M.N., Zhang, H.-C., Andrade-Gordon, P., Kauffman, J.A., Nicolaou, K.C., Liu, A., Brungs, P.H.: Macrocyclic Peptide inhibitors of serine proteases. Convergent total synthesis of cyclotheonamides A and B via a late-stage primary amine intermediate study of thrombin inhibition under diverse conditions. J. Am. Chem. Soc. 117, 1225–1239 (1995)CrossRefGoogle Scholar
  11. 11.
    Dahiya, R.: Synthesis of a phenylalanine-rich peptide as potential anthelmintic and cytotoxic agent. Acta Polon. Pharm.-Drug Res. 64, 509–516 (2007)Google Scholar
  12. 12.
    Brasun, J., Witkiewicz, A.M., Ołdziej, S., Pratesi, A., Ginanneschi, M., Messori, L.: Impact of ring size on the copper(II) coordination abilities of cyclic peptides. J. Inorg. Biochem. 103, 813–817 (2009)CrossRefGoogle Scholar
  13. 13.
    Ross, A.R.S., Luettgen, S.L.: Speciation of Cyclo(Pro-Gly)3 and its divalent metal-ion complexes by electrospray ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 16, 1536–1544 (2005)CrossRefGoogle Scholar
  14. 14.
    Praveena, G., Kolandaivel, P.: Interaction of metal ions with Cyclo [(1R,3S)-γ-Acc-Gly]3 hexapeptide-A theoretical study. J. Mol. Struct. (Theochem) 900, 96–102 (2009)CrossRefGoogle Scholar
  15. 15.
    Montenegro, J., Ghadiri, M.R., Granja, J.R.: Ion channel models based on self-assembling cyclic peptide nanotubes. Acc. Chem. Res. 46, 2955–2965 (2013)CrossRefGoogle Scholar
  16. 16.
    Sansom, M.S.P.: Alamethicin and related peptaibols-model ion channels. Eur. Biophys. J. 22, 105–124 (1993)Google Scholar
  17. 17.
    Ghadiri, M.R., Granja, J.R., Buehler, L.K.: Artificial transmembrane ion channels from self assembling peptide nanotubes. Nature 369(6478), 301–304 (1994)CrossRefGoogle Scholar
  18. 18.
    Wang, D., Guo, L., Zhang, J., Roeske, R.W., Jones, L.R., Chen, Z., Pritchard, C.: Artificial ion channels formed by a synthetic cyclic peptide. J. Peptide. Res. 57, 301–306 (2001)CrossRefGoogle Scholar
  19. 19.
    Chapman, R., Danial, M., Koh, M.L., Jolliffe, K.A., Perrier, S.: Design and properties of functional nanotubes from the self-assembly of cyclic peptide templates. Chem. Soc. Rev. 41, 6023–6041 (2012)CrossRefGoogle Scholar
  20. 20.
    Kubik, S.: Large increase in cation binding affinity of artificial cyclopeptide receptoresby an allosteric effect. J. Am. Chem. Soc. 121, 5846–5855 (1999)CrossRefGoogle Scholar
  21. 21.
    Hioki, H., Kinami, H., Yoshida, A., Kojima, A., Kodama, M., Takaoka, S., Uedab, K., Katsu, T.: Synthesis of N-substituted cyclic triglycines and their response to metal ions. Tetrahedron Lett. 45, 1091–1094 (2004)CrossRefGoogle Scholar
  22. 22.
    Izzo, I., Ianniello, G., Cola, C.D., Nardone, B., Erra, L., Vaughan, G., Tedesco, C., Riccardis, F.D.: Structural effects of proline substitution and metal binding on hexameric cyclic peptoides. Org. Lett. 15, 598–601 (2013)CrossRefGoogle Scholar
  23. 23.
    Joshi, K.B., Verma, S.: Monovalent cation-promoted ordering of a glycine-rich cyclic peptides. Tetrahedron 63, 5602–5607 (2007)CrossRefGoogle Scholar
  24. 24.
    Benedetti, E., Bavoso, A.: A., Blasio, B. D., Pavone, V., Pedone, C., Rossl, F.: Cyclic peptide metal salt adduct. II. Crystal structure of the silver nitrate cyclosarcosylsarcosine 2:1 adduct. Inorg. Chim. Acta 116, 31–35 (1986)CrossRefGoogle Scholar
  25. 25.
    Brasun, J., Matera, A., Ołdziej, S., Kozłowska, J., Messor, L., Gabbiani, C.: Orfei, Ginanneschi, M.: The copper (II) coordination abilities of three novel cyclic tetrapeptides with –his-Xaa-His- motif. J. Inorg. Biochem. 101, 452–460 (2007)CrossRefGoogle Scholar
  26. 26.
    Madison, V., Deber, C.M., Blout, E.R.: Cyclic peptides. 17. Metal and amino acid complexes of cyclo(Pro-Gly)4 and analogues studied by nuclear magnetic resonance and circular dichroism. J. Am. Chem. Soc. 99, 4788–4798 (1977)CrossRefGoogle Scholar
  27. 27.
    Praveena, G., Kolandaivel, P.: Metal ion binding of α-γ hybrid cyclic peptid nanotubes-A theoretical study based on the ONIOM method. The IEEE Transactionson Nanobioscience. 9, 100–110 (2010)CrossRefGoogle Scholar
  28. 28.
    Chermahini, A.N., Rezapour, M., Teimouri, A.: Selective complexation of alkali metal ions and nanotubular cyclopeptides: a DFT study. J. Incl. Phenom. Macrocycl. Chem. 79, 205–2014 (2014)CrossRefGoogle Scholar
  29. 29.
    Lee, C., Yang, W., Parr, R.G.: Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 37, 785–789 (1988)CrossRefGoogle Scholar
  30. 30.
    Becke, A.: D.: density functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993)CrossRefGoogle Scholar
  31. 31.
    Kamiya, M., Tsuneda, T., Hirao, K.: A density functional study of van der waals interactions. J. Chem. Phys. 117(13), 6010–6015 (2002)CrossRefGoogle Scholar
  32. 32.
    Yanai, T., Tew, D.P., Handy, N.C.: A new hybrid exchange-correlation functional using the coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 393(1–3), 51–57 (2004)CrossRefGoogle Scholar
  33. 33.
    van Duijneveldt, F.B., Van Duijneveldt-van de Rijdt, J.G., Jeanne G.C.M., Van Lenthe, J.H.: State of the art in counterpoise theory. Chem. Rev. 94, 1873–1885 (1994)Google Scholar
  34. 34.
    Boys, S.F., Bernardi, F.: The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 19, 553–566 (1970)CrossRefGoogle Scholar
  35. 35.
    Reed, A.E., Weinstock, R.B.: Natural population analysis. J. Chem. Phys. 83, 735–746 (1985)CrossRefGoogle Scholar
  36. 36.
    Bader, R.F.W.: Atoms in molecules, a quantum theory. International Series of Monographs in Chemistry. Oxford University Press, Oxford (1990)Google Scholar
  37. 37.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Jr., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, M.J., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J., Gaussian 09, Revision A.01, Gaussian Inc., Wallingford, (2009)Google Scholar
  38. 38.
    Druyan, M.E., Coulter, C.L., Walter, R., Kartha, G., Arnbady, G.K.: Structure and conformation of cyclo(tri-L-Prolyl) in the crystalline state. J. Am. Chem. Soc. 98, 5496–5502 (1976)CrossRefGoogle Scholar
  39. 39.
    De Leeuw, F.A.A.M., Altona, C., Kessler, H., Bermel, W., Friedrich, A., Krack, G., Hul, W.: E: Conformational analysis of proline rings from proton spin-spin coupling constants and force-field calculations: Application to three cyclic tripeptides. J. Am. Chem. Soc. 105, 2237–2246 (1983)CrossRefGoogle Scholar
  40. 40.
    Lowe, S.L., Pandey, R.R., Czlapinski, J., Kie-Adams, G., Hoffmann, M.R., Thomasson, K.A., Pierce, K.S.: Dipole interaction model predicted π − π* circular dichroism of cyclo(l-Pro)3 using structures created by semi-empirical, ab initio, and molecular mechanics methods. J. Peptide Res. 61, 189–201 (2003)CrossRefGoogle Scholar
  41. 41.
    Diao, K.-S., Wang, H.-J., Qiu, Z.-M.: A DFT study on the selective extraction of metallic ions by 12-crown-4. J. Solution Chem. 38, 713–724 (2009)CrossRefGoogle Scholar
  42. 42.
    Singh, R.N., Kumar, A., Tiwari, R.K., Rawat, P.: A combined experimental and theoretical (DFT and AIM) studies on synthesis, molecular structure, spectroscopic properties and multiple interactions analysis in a novel Ethyl-4-[2-(thiocarbamoyl)hydrazinylidene]-3,5-dimethyl-1H-pyrrole-2-carboxylate and its dimer. Spectrochim. Acta A. 112, 182–190 (2013)Google Scholar
  43. 43.
    Bader, R.F.W.: A quantum theory of molecular structure and its applications. Chem. Rev. 91, 893–928 (1991)CrossRefGoogle Scholar
  44. 44.
    Popelier, P.L.A.: On the full topology of the Laplacian of the electron density. Coord. Chem. Rev. 197, 169–189 (2000)CrossRefGoogle Scholar
  45. 45.
    Oliveira, B.G.: A DFT and AIM study of blue-shifting hydrogen bonds and secondary interactions in small heterocyclic complexes. J. Argent J. Chem. Soc. 95, 59–69 (2007)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Zahra Jafari Chermahini
    • 1
  • Alireza Najafi Chermahini
    • 1
  • Hossein A. Dabbagh
    • 1
  • Abbas Teimouri
    • 2
  1. 1.Department of ChemistryIsfahan University of TechnologyEsfahanIran
  2. 2.Chemistry DepartmentPayame Noor University (PNU)TehranIran

Personalised recommendations