Skip to main content
Log in

Complexation of all-cis cyclo(L-Pro)3 and alkali metal cations: a DFT study

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

We studied the complexation of cyclo(L-Pro)3 with alkali metal cations (Li+, Na+, K+, Rb+ and Cs+) in the gas phase using density functional theory (DFT) calculations. The complexes were optimized at B3LYP/6-31+G(d) and CAM-B3LYP/6-31+G(d) levels of theory. The binding energy of M+-cyclo(L-Pro)3 complexes was increased in the following order: Li+ > Na+ > K+ > Rb+ > Cs+. Natural bond orbital (NBO) analysis at B3LYP/6-31+G (d) level was performed on the optimized geometries. These results indicated that the complexation in M+-cyclo(L-Pro)3 complexes, was caused by the lone pair electrons of electron donating oxygen atoms and the LP* orbitals of alkali cations. The electron density at bond critical points was consistent with the binding energy of M+-cyclo(L-Pro)3 complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chen, G.J., Su, S., Liu, R.Z.: Theoretical studies of monomer and dimer of cyclo[(-1-phe1d-ala2-)n] and cyclo [(-1-phe1-d-MeN-Ala2-)n] (n = 3-6). J. Phys. Chem. B. 106, 1570–1575 (2002)

    Article  CAS  Google Scholar 

  2. Teranishi, M., Okamoto, H., Takeda, K., Nomura, K., Nakano, A., Kalia, R.K.: Vashishta, Shimojo, P. F.: Molecular dynamic approach to the conformational transition in peptide nanorings and nanotubes. J. Phys. Chem. B. 113, 1473–1484 (2009)

    Article  CAS  Google Scholar 

  3. Hartgerink, J.D., Granja, J.R., Milligan, R.A., Ghadiri, M.R.: Self-assembling peptide nanotubes. J. Am. Chem. Soc. 118, 43–50 (1996)

    Article  CAS  Google Scholar 

  4. Tan, H.W., Qu, W.W., Chen, G.J., Liu, R.Z.: Theoretical investigation of the self-assembly of cyclo[(-β3-HGly)4-]. Chem. Phys. Lett. 369, 556–562 (2003)

    Article  CAS  Google Scholar 

  5. Poteau, R., Trinquier, G.: All-cis cyclic peptides. J. Am. Chem. Soc. 127, 13875–13889 (2005)

    Article  CAS  Google Scholar 

  6. Boyle, T.P., Bremner, J.P., Coates, J., Deadman, J., Keller, P.A.: New cyclic peptides via ring-closing metathesis reactions and their anti-bacterial activities. Tetrahedron 64, 11270–11290 (2008)

    Article  CAS  Google Scholar 

  7. Cheng, L., Naumann, T.A., Horswill, A.R., Hong, S.-J., Venters, B.J., Tomsho, J.W., Benkovic, S.J., Keiler, K.C.: Discovery of antibacterial cyclic peptides that inhibit the ClpXP protease. Protein Sci. 16, 1535–1542 (2007)

    Article  CAS  Google Scholar 

  8. Femandez-Lopez, S., Kim, H.-S., Choi, B.C., Delgado, M., Granja, J.R., Khasanov, A., Kraehenbuehl, K., Long, G., Weinberger, D.A., Wilcoxen, K.M., Ghadiri, M.R.: Antibacterial agents based on the cyclic D, L-a-peptide architecture. Nature 412, 452–455 (2001)

    Article  Google Scholar 

  9. Matsumoto, T., Nishimura, K., Takeya, K.: New Cyclic Peptides from Citrus medica var. sarcodactylis SWINGLE. Chem. Pharm. Bull. 50, 857–860 (2002)

    Article  CAS  Google Scholar 

  10. Maryanoff, B.E., Greco, M.N., Zhang, H.-C., Andrade-Gordon, P., Kauffman, J.A., Nicolaou, K.C., Liu, A., Brungs, P.H.: Macrocyclic Peptide inhibitors of serine proteases. Convergent total synthesis of cyclotheonamides A and B via a late-stage primary amine intermediate study of thrombin inhibition under diverse conditions. J. Am. Chem. Soc. 117, 1225–1239 (1995)

    Article  CAS  Google Scholar 

  11. Dahiya, R.: Synthesis of a phenylalanine-rich peptide as potential anthelmintic and cytotoxic agent. Acta Polon. Pharm.-Drug Res. 64, 509–516 (2007)

    Google Scholar 

  12. Brasun, J., Witkiewicz, A.M., Ołdziej, S., Pratesi, A., Ginanneschi, M., Messori, L.: Impact of ring size on the copper(II) coordination abilities of cyclic peptides. J. Inorg. Biochem. 103, 813–817 (2009)

    Article  CAS  Google Scholar 

  13. Ross, A.R.S., Luettgen, S.L.: Speciation of Cyclo(Pro-Gly)3 and its divalent metal-ion complexes by electrospray ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 16, 1536–1544 (2005)

    Article  CAS  Google Scholar 

  14. Praveena, G., Kolandaivel, P.: Interaction of metal ions with Cyclo [(1R,3S)-γ-Acc-Gly]3 hexapeptide-A theoretical study. J. Mol. Struct. (Theochem) 900, 96–102 (2009)

    Article  CAS  Google Scholar 

  15. Montenegro, J., Ghadiri, M.R., Granja, J.R.: Ion channel models based on self-assembling cyclic peptide nanotubes. Acc. Chem. Res. 46, 2955–2965 (2013)

    Article  CAS  Google Scholar 

  16. Sansom, M.S.P.: Alamethicin and related peptaibols-model ion channels. Eur. Biophys. J. 22, 105–124 (1993)

    CAS  Google Scholar 

  17. Ghadiri, M.R., Granja, J.R., Buehler, L.K.: Artificial transmembrane ion channels from self assembling peptide nanotubes. Nature 369(6478), 301–304 (1994)

    Article  CAS  Google Scholar 

  18. Wang, D., Guo, L., Zhang, J., Roeske, R.W., Jones, L.R., Chen, Z., Pritchard, C.: Artificial ion channels formed by a synthetic cyclic peptide. J. Peptide. Res. 57, 301–306 (2001)

    Article  CAS  Google Scholar 

  19. Chapman, R., Danial, M., Koh, M.L., Jolliffe, K.A., Perrier, S.: Design and properties of functional nanotubes from the self-assembly of cyclic peptide templates. Chem. Soc. Rev. 41, 6023–6041 (2012)

    Article  CAS  Google Scholar 

  20. Kubik, S.: Large increase in cation binding affinity of artificial cyclopeptide receptoresby an allosteric effect. J. Am. Chem. Soc. 121, 5846–5855 (1999)

    Article  CAS  Google Scholar 

  21. Hioki, H., Kinami, H., Yoshida, A., Kojima, A., Kodama, M., Takaoka, S., Uedab, K., Katsu, T.: Synthesis of N-substituted cyclic triglycines and their response to metal ions. Tetrahedron Lett. 45, 1091–1094 (2004)

    Article  CAS  Google Scholar 

  22. Izzo, I., Ianniello, G., Cola, C.D., Nardone, B., Erra, L., Vaughan, G., Tedesco, C., Riccardis, F.D.: Structural effects of proline substitution and metal binding on hexameric cyclic peptoides. Org. Lett. 15, 598–601 (2013)

    Article  CAS  Google Scholar 

  23. Joshi, K.B., Verma, S.: Monovalent cation-promoted ordering of a glycine-rich cyclic peptides. Tetrahedron 63, 5602–5607 (2007)

    Article  CAS  Google Scholar 

  24. Benedetti, E., Bavoso, A.: A., Blasio, B. D., Pavone, V., Pedone, C., Rossl, F.: Cyclic peptide metal salt adduct. II. Crystal structure of the silver nitrate cyclosarcosylsarcosine 2:1 adduct. Inorg. Chim. Acta 116, 31–35 (1986)

    Article  CAS  Google Scholar 

  25. Brasun, J., Matera, A., Ołdziej, S., Kozłowska, J., Messor, L., Gabbiani, C.: Orfei, Ginanneschi, M.: The copper (II) coordination abilities of three novel cyclic tetrapeptides with –his-Xaa-His- motif. J. Inorg. Biochem. 101, 452–460 (2007)

    Article  CAS  Google Scholar 

  26. Madison, V., Deber, C.M., Blout, E.R.: Cyclic peptides. 17. Metal and amino acid complexes of cyclo(Pro-Gly)4 and analogues studied by nuclear magnetic resonance and circular dichroism. J. Am. Chem. Soc. 99, 4788–4798 (1977)

    Article  CAS  Google Scholar 

  27. Praveena, G., Kolandaivel, P.: Metal ion binding of α-γ hybrid cyclic peptid nanotubes-A theoretical study based on the ONIOM method. The IEEE Transactionson Nanobioscience. 9, 100–110 (2010)

    Article  Google Scholar 

  28. Chermahini, A.N., Rezapour, M., Teimouri, A.: Selective complexation of alkali metal ions and nanotubular cyclopeptides: a DFT study. J. Incl. Phenom. Macrocycl. Chem. 79, 205–2014 (2014)

    Article  Google Scholar 

  29. Lee, C., Yang, W., Parr, R.G.: Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 37, 785–789 (1988)

    Article  CAS  Google Scholar 

  30. Becke, A.: D.: density functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993)

    Article  CAS  Google Scholar 

  31. Kamiya, M., Tsuneda, T., Hirao, K.: A density functional study of van der waals interactions. J. Chem. Phys. 117(13), 6010–6015 (2002)

    Article  CAS  Google Scholar 

  32. Yanai, T., Tew, D.P., Handy, N.C.: A new hybrid exchange-correlation functional using the coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 393(1–3), 51–57 (2004)

    Article  CAS  Google Scholar 

  33. van Duijneveldt, F.B., Van Duijneveldt-van de Rijdt, J.G., Jeanne G.C.M., Van Lenthe, J.H.: State of the art in counterpoise theory. Chem. Rev. 94, 1873–1885 (1994)

  34. Boys, S.F., Bernardi, F.: The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 19, 553–566 (1970)

    Article  CAS  Google Scholar 

  35. Reed, A.E., Weinstock, R.B.: Natural population analysis. J. Chem. Phys. 83, 735–746 (1985)

    Article  CAS  Google Scholar 

  36. Bader, R.F.W.: Atoms in molecules, a quantum theory. International Series of Monographs in Chemistry. Oxford University Press, Oxford (1990)

    Google Scholar 

  37. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Jr., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, M.J., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J., Gaussian 09, Revision A.01, Gaussian Inc., Wallingford, (2009)

  38. Druyan, M.E., Coulter, C.L., Walter, R., Kartha, G., Arnbady, G.K.: Structure and conformation of cyclo(tri-L-Prolyl) in the crystalline state. J. Am. Chem. Soc. 98, 5496–5502 (1976)

    Article  CAS  Google Scholar 

  39. De Leeuw, F.A.A.M., Altona, C., Kessler, H., Bermel, W., Friedrich, A., Krack, G., Hul, W.: E: Conformational analysis of proline rings from proton spin-spin coupling constants and force-field calculations: Application to three cyclic tripeptides. J. Am. Chem. Soc. 105, 2237–2246 (1983)

    Article  Google Scholar 

  40. Lowe, S.L., Pandey, R.R., Czlapinski, J., Kie-Adams, G., Hoffmann, M.R., Thomasson, K.A., Pierce, K.S.: Dipole interaction model predicted π − π* circular dichroism of cyclo(l-Pro)3 using structures created by semi-empirical, ab initio, and molecular mechanics methods. J. Peptide Res. 61, 189–201 (2003)

    Article  CAS  Google Scholar 

  41. Diao, K.-S., Wang, H.-J., Qiu, Z.-M.: A DFT study on the selective extraction of metallic ions by 12-crown-4. J. Solution Chem. 38, 713–724 (2009)

    Article  CAS  Google Scholar 

  42. Singh, R.N., Kumar, A., Tiwari, R.K., Rawat, P.: A combined experimental and theoretical (DFT and AIM) studies on synthesis, molecular structure, spectroscopic properties and multiple interactions analysis in a novel Ethyl-4-[2-(thiocarbamoyl)hydrazinylidene]-3,5-dimethyl-1H-pyrrole-2-carboxylate and its dimer. Spectrochim. Acta A. 112, 182–190 (2013)

  43. Bader, R.F.W.: A quantum theory of molecular structure and its applications. Chem. Rev. 91, 893–928 (1991)

    Article  CAS  Google Scholar 

  44. Popelier, P.L.A.: On the full topology of the Laplacian of the electron density. Coord. Chem. Rev. 197, 169–189 (2000)

    Article  CAS  Google Scholar 

  45. Oliveira, B.G.: A DFT and AIM study of blue-shifting hydrogen bonds and secondary interactions in small heterocyclic complexes. J. Argent J. Chem. Soc. 95, 59–69 (2007)

    CAS  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the Isfahan University of Technology for the financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Najafi Chermahini.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 54 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chermahini, Z.J., Chermahini, A.N., Dabbagh, H.A. et al. Complexation of all-cis cyclo(L-Pro)3 and alkali metal cations: a DFT study. J Incl Phenom Macrocycl Chem 81, 465–473 (2015). https://doi.org/10.1007/s10847-015-0476-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-015-0476-0

Keywords

Navigation