Evaluation of actarit/γ-cyclodextrin complex prepared by different methods

  • Yutaka Inoue
  • Shota Watanabe
  • Rina Suzuki
  • Isamu Murata
  • Ikuo Kanamoto
Original Article


This study used actarit (ACT), an antirheumatic drug, to examine the molecular interaction of ACT and γ-CD in a solid state as a result of cogrinding or freeze-drying and it assessed the dissolution of ACT. Differential scanning calorimetry revealed that coground ACT and γ-CD at molar ratios of 1:2 and 1:3 and freeze-dried ACT and γ-CD at molar ratios of 1:1 and 1:2 lacked an endothermic peak due to melting of ACT crystals. Thus, coground ACT and γ-CD at a molar ratio of 1:2 had molecular interaction, as did freeze-dried ACT and γ-CD at a molar ratio of 1:1. Powder x-ray diffraction revealed that coground and humidified ACT and γ-CD at a molar ratio of 1:2 produced a characteristic diffraction peak at 2θ = 15.2° and 16.5° due to the cage structure of γ-CD. In addition, freeze-dried ACT and γ-CD at a molar ratio of 1:1 that had been humidified produced a diffraction peak at 2θ = 6.0° and 15.9° characteristic of a hexagonal structure with head-to-head channels due to γ-CD. Assessment of dissolution revealed that ground mixtures (GMs) and freeze-dried mixtures had improved dissolution of ACT compared to ACT, ground ACT alone, and physical mixtures. The mechanism for this is presumably the result of molecular interaction in a solid state or molecular interaction in an aqueous solution. 1H–1H NOESY NMR spectra suggested that in a GM of ACT and γ-CD the benzene ring and methyl group of ACT partially enter the CD cavity. In addition, spectra for freeze-dried ACT and γ-CD suggested that protons of the methylene group of ACT and the benzene ring of ACT partially enter the CD cavity. These findings indicate that ACT and γ-CD inclusion complexes feature different forms of inclusion depending on how they are prepared, e.g., cogrinding or freeze-drying. Findings also indicated that selection of a method of preparation may play a major role in drug development.


Molecular interaction Ground mixture Freeze dried γ-Cyclodextrin Actarit 



The authors wish to thank Cyclo Chem Co. Ltd. for providing γ-CD. The authors also wish to sincerely thank Nippon Shinyaku Corporation for providing ACT.


  1. 1.
    Hu, J., Johnston, K.P., Williams, R.O.: Rapid dissolving high potency danazol powders produced by spray freezing into liquid process. Int. J. Pharm. 271, 145–154 (2004)CrossRefGoogle Scholar
  2. 2.
    Pankajkumar, S.Y., Kumar, V., Pratap, S.U., Bhat, R.H., Mazumder, B.: Physicochemical characterization and in vitro dissolution studies of solid dispersions of ketoprofen with PVP K30 and d-mannitol. Saudi. Pharm. J. 22, 77–84 (2013)Google Scholar
  3. 3.
    Prabhu, S., Ortega, M., Ma, C.: Novel lipid-based formulations enhancing the in vitro dissolution and permeability characteristics of a poorly water-soluble model drug, piroxicam. Int. J. Pharm. 301, 209–216 (2005)CrossRefGoogle Scholar
  4. 4.
    Wongmekiat, A., Tozuka, Y., Moribe, K., Oguchi, T., Yamamoto, K.: Preparation of drug nanoparticles by co-grinding with cyclodextrin: formation mechanism and factors affecting nanoparticle formation. Chem. Pharm. Bull. 55, 359–363 (2007)CrossRefGoogle Scholar
  5. 5.
    Tao, T., Zhao, Y., Wu, J., Zhou, B.: Preparation and evaluation of itraconazole dihydrochloride for the solubility and dissolution rate enhancement. Int. J. Pharm. 367, 109–114 (2009)CrossRefGoogle Scholar
  6. 6.
    Yeo, L., Kenneth, D., Harris, M.: Definitive structural characterization of the conventional low-temperature host structure in urea inclusion compounds. Acta. Cryst. B53, 822–830 (1997)CrossRefGoogle Scholar
  7. 7.
    Miki, K., Masui, A., Kasai, N., Miyata, M., Shibakami, M., Takemoto, K.: New channel-type inclusion compound of steroidal bile acid. Structure of a 1:1 complex between cholic acid and acetophenone. J. Am. Chem. Soc. 110, 6594–6596 (1988)CrossRefGoogle Scholar
  8. 8.
    Brewster, M.E., Loftsson, T.: Cyclodextrins as pharmaceutical solubilizers. Adv. Drug Deliv. Rev. 59, 645–666 (2007)CrossRefGoogle Scholar
  9. 9.
    Dollo, G., Le, C.P., Chollet, M., Chevanne, F., Bertault, M., Burgot, J.L., Le, V.R.: Improvement in solubility and dissolution rate of 1,2-dithiole-3-thiones upon complexation with beta-cyclodextrin and its hydroxypropyl and sulfobutyl ether-7 derivatives. J. Pharm. Sci. 88, 889–895 (1999)CrossRefGoogle Scholar
  10. 10.
    Hirayama, F., Uekama, K.: Cyclodextrin-based controlled drug release system. Adv. Drug Deliv. Rev. 36, 125–141 (1999)CrossRefGoogle Scholar
  11. 11.
    Nagase, Y., Hirata, M., Wada, K., Arima, H., Hirayama, F., Irie, T., Kikuchi, M., Uekama, K.: Improvement of some pharmaceutical properties of DY-9760e by sulfobutyl ether beta-cyclodextrin. Int. J. Pharm. 229, 163–172 (2001)CrossRefGoogle Scholar
  12. 12.
    Cabral-Marques, H., Almeida, R.: Optimisation of spray-drying process variables for dry powder inhalation (DPI) formulations of corticosteroid/cyclodextrin inclusion complexes. Eur. J. Pharm. Biopharm. 73, 121–129 (2009)CrossRefGoogle Scholar
  13. 13.
    Mangolim, C.S., Moriwaki, C., Nogueira, A.C., Sato, F., Baesso, M.L., Neto, A.M., Matioli, G.: Curcumin-β-cyclodextrin inclusion complex: stability, solubility, characterisation by FT-IR, FT-Raman, X-ray diffraction and photoacoustic spectroscopy, and food application. Food. Chem. 153, 361–370 (2014)CrossRefGoogle Scholar
  14. 14.
    Iwata, M., Fukami, T., Kawashima, D., Sakai, M., Furuishi, T., Suzuki, T., Tomono, K., Ueda, H.: Effectiveness of mechanochemical treatment with cyclodextrins on increasing solubility of glimepiride. Pharmazie. 64, 390–394 (2009)Google Scholar
  15. 15.
    Ogawa, N., Higashi, K., Nagase, H., Endo, T., Moribe, K., Loftsson, T., Yamamoto, K., Ueda, H.: Effects of cogrinding with <beta>-cyclodextrin on the solid state fentanyl. J. Pharm. Sci. 99, 5019–5029 (2010)CrossRefGoogle Scholar
  16. 16.
    Uekama, K., Hirayama, F., Ikeda, K., Inaba, K.: Utilization of cyclodextrin complexation for separation of E, A, and B prostaglandins by ion-exchange liquid chromatography. J. Pharm. Sci. 66, 706–710 (1977)CrossRefGoogle Scholar
  17. 17.
    Al Omari, A.A., Al, O.M.M., Badwan, A.A., Al-Sou’od, K.A.: Effect of cyclodextrins on the solubility and stability of candesartan cilexetil in solution and solid state. J. Pharm. Biomed. Anal. 54, 503–509 (2011)CrossRefGoogle Scholar
  18. 18.
    Torikai, E., Kageyama, Y., Takahashi, M., Nagano, A.: The effect of methotrexate on bone metabolism markers in patients with rheumatoid arthritis. Mod. Rheumatol. 16, 350–354 (2006)CrossRefGoogle Scholar
  19. 19.
    Ye, J., Wang, Q., Zhou, X., Zhang, N.: Injectable actarit-loaded solid lipid nanoparticles as passive targeting therapeutic agents for rheumatoid arthritis. Int. J. Pharm. 352, 273–279 (2008)CrossRefGoogle Scholar
  20. 20.
    Inoue, Y., Yamazoe, T., Watanabe, S., Murata, I., Kanamoto, I.: Examination of intermolecular interaction as a result of cogrinding actarit and β-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 78, 457–464 (2014)CrossRefGoogle Scholar
  21. 21.
    Xiao, C.F., Li, K., Huang, R., He, G.J., Zhang, J.Q., Zhu, L., Yang, Q.Y., Jiang, K.M., Jin, Y., Lin, J.: Investigation of inclusion complex of epothilone A with cyclodextrins. Carbohydr. Polym. 102, 297–305 (2014)CrossRefGoogle Scholar
  22. 22.
    Inoue, Y., Hasegawa, N., Tozuka, Y., Yonemochi, E., Oguchi, T., Higashi, K., Moribe, K., Yamamoto, K.: Molecular states of p-dimethylaminobenzonitrile coground with β-cyclodextrin investigated using solid-state fluorescence spectroscopy. Chem. Pharm. Bull. 59, 1299–1302 (2011)CrossRefGoogle Scholar
  23. 23.
    Chung, J.W., Guo, Y., Priestley, R.D., Kwak, S.Y.: Colloidal gold nanoparticle formation derived from self-assembled supramolecular structure of cyclodextrin/Au salt complex. Nanoscale. 3, 1766–1772 (2011)CrossRefGoogle Scholar
  24. 24.
    Toropainen, T., Heikkilä, T., Leppänen, J., Matilainen, L., Velaga, S., Jarho, P., Carlfors, J., Lehto, V.P., Järvinen, T., Järvinen, K.: Crystal structure changes of gamma-cyclodextrin after the SEDS process in supercritical carbon dioxide affect the dissolution rate of complexed budesonide. Pharm. Res. 6, 1058–1066 (2007)CrossRefGoogle Scholar
  25. 25.
    Higashi, K., Ideura, S., Waraya, H., Limwikrant, W., Moribe, K., Yamamoto, K.: Simultaneous dissolution of naproxen and flurbiprofen from a novel ternary gamma-cyclodextrin complex. Chem. Pharm. Bull. 58, 769–772 (2010)CrossRefGoogle Scholar
  26. 26.
    Anzai, K., Mizoguchi, J., Yanagi, T., Hirayama, F., Arima, H., Uekama, K.: Improvement of dissolution properties of a new Helicobacter pylori eradicating agent (TG44) by inclusion complexation with beta-cyclodextrin. Chem. Pharm. Bull. 55, 1466–1470 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Yutaka Inoue
    • 1
  • Shota Watanabe
    • 1
  • Rina Suzuki
    • 1
  • Isamu Murata
    • 1
  • Ikuo Kanamoto
    • 1
  1. 1.Laboratory of Drug Safety Management, Faculty of Pharmaceutical SciencesJosai UniversitySakado-shiJapan

Personalised recommendations