Advertisement

Surface-confined amantadine–β-cyclodextrin inclusion complex: voltammetric study and application

  • Fahimeh Jalali
  • Sajjad Riahi
Original Article

Abstract

A carbon paste electrode was modified with β-cyclodextrin (β-CD/CPE) and used in the competitive voltammetric determination of antiviral drug, amantadine. Ferrocene (FC) was used as the electrochemical probe which competed with amantadine for β-CD cavity. Study of the complexation of FC and amantadine with β-cyclodextrin was followed by cyclic voltammetry. Inclusion of FC in β-CD cavity at the surface of the modified electrode showed the adsorptive nature of current flow \( \left( {\Delta E_{\text{p}} \sim 0\;{\text{V}}} \right) \). The formation constant of FC–β-CD complex was calculated from voltammetric data to be 2.03 × 10M−1. In the presence of amantadine, the adsorptive current of FC decreased. The stability constant of amantadine–β-CD complex was calculated to be 9.40 × 10M−1. A linear relationship between current decrease and amantadine concentration was observed in the range of 0.1–1.0 mM using differential pulse voltammetry. The limit of detection was 0.08 mM with a sensitivity of 1.34 μA/mM. The modified electrode was used successfully in the determination of amantadine in tablets (recovery % = 96 ± 1 %).

Keywords

Inclusion complex Carbon paste electrode Competition Amantadine β-Cyclodextrin Ferrocene 

Notes

Acknowledgments

Authors acknowledge the financial support from the research council of Razi University.

References

  1. 1.
    Prud’homme, I.T., Zoueva, O., Weber, J.M.: Amantadine susceptibility in influenza A virus isolates: determination methods and lack of resistance in a Canadian sample. Clin. Diagn. Virol. 8, 41–51 (1997)CrossRefGoogle Scholar
  2. 2.
    Paci, C., Thomas, A., Onofrj, M.: Amantadine for dyskinesia in patients affected by severe Parkinson’s disease. Neurol. Sci. 22, 75–76 (2001)CrossRefGoogle Scholar
  3. 3.
    Smith, J.P., Riley, T.R., Bingaman, S., Mauger, D.T.: Amantadine therapy for chronic hepatitis C: a dose escalation study. Am. J. Gastroenterol. 99, 1099–1104 (2004)CrossRefGoogle Scholar
  4. 4.
    Krupp, L.B.: Fatigue in multiple sclerosis: definition, pathophysiology and treatment. CNS Drugs 17, 225–234 (2003)CrossRefGoogle Scholar
  5. 5.
    Martindale: The Complete Drug Reference, 33rd edn., pp. 1161–1162. Pharmaceutical, London (2002)Google Scholar
  6. 6.
    Cui, S., Feng, F., Liu, H., Ma, M.: New method for high-performance liquid chromatographic determination of amantadine and its analogues in rat plasma. J. Pharmaceut. Biomed. 44, 1100–1105 (2007)CrossRefGoogle Scholar
  7. 7.
    van der Horst, F.A.L., Teeuwsen, J., Holthuis, J.J.M., Brinkman, U.A.T.: High-performance liquid chromatographic determination of amantadine in urine after micelle-mediated pre-column derivatization with 1-fluoro-2,4-dinitrobenzene. J. Pharmaceut. Biomed. 8, 799–804 (1990)CrossRefGoogle Scholar
  8. 8.
    Wang, P., Liang, Y.Z., Chen, B.M., Zhou, N., Yi, L.Z., Yu, Y., Yi, Z.B.: Quantitative determination of amantadine in human plasma by liquid chromatography-mass spectrometry and the application in a bioequivalence study. J. Pharmaceut. Biomed. 43, 1519–1525 (2007)CrossRefGoogle Scholar
  9. 9.
    Duh, T.H., Wu, H.L., Pan, C.W., Kou, H.S.: Fluorimetric liquid chromatographic analysis of amantadine in urine and pharmaceutical formulation. J. Chromatogr. A 23, 1–2 (2005)Google Scholar
  10. 10.
    Leis, H.J., Fauler, G., Windischhofer, W.: Quantitative analysis of memantine in human plasma by gas chromatography/negative ion chemical ionization/mass spectrometry. J. Mass Spectrum. 37, 477–480 (2002)CrossRefGoogle Scholar
  11. 11.
    Yeh, H.H., Yang, Y.H., Chen, S.H.: Simultaneous determination of memantine and amantadine in human plasma as fluorescein derivatives by micellar electrokinetic chromatography with laser-induced fluorescence detection and its clinical application. Electrophoresis 31, 1903–1911 (2010)CrossRefGoogle Scholar
  12. 12.
    Mahmoud, A.M., Khalil, N.Y., Darwish, I.A., Aboul-Fadl, Y.: Selective spectrophotometric and spectrofluorometric methods for the determination of amantadine hydrochloride in capsules and plasma via derivatization with 1,2-naphthoquinone-4-sulphonate. Int. J. Anal. Chem. (2009). doi: 10.1155/2009/810104 Google Scholar
  13. 13.
    Omara, H.A., Amin, A.S.: Spectrophotometric micro determination of anti-Parkinsonian and antiviral drug amantadine HCl in pure and in dosage forms. Arabian J. Chem. 4, 287–292 (2011)CrossRefGoogle Scholar
  14. 14.
    Askal, H.F., Khedr, A.S., Darwish, I.A., Mahmoud, R.M.: Quantitative thin-layer chromatographic method for determination of amantadine hydrochloride. Int. J. Biomed. Sci. 4, 155–160 (2008)Google Scholar
  15. 15.
    Rizk, M.S., Toubar, S.S., Sultan, M.A., Assaad, S.H.: Ultraviolet spectrophotometric determination of primary amine-containing drugs via their charge-transfer complexes with tetracyanoethylene. Microchim. Acta 143, 281–285 (2003)CrossRefGoogle Scholar
  16. 16.
    Darwish, I.A., Khedr, A.S., Askal, H.F., Mahmoud, R.M.: Simple and sensitive spectrophotometric methods for determination of amantadine hydrochloride. J. Appl. Spectrosc. 73, 792–797 (2006)CrossRefGoogle Scholar
  17. 17.
    Jalali, F., Maghooli, R.: Potentiometric determination of trace amounts of amantadine using a modified carbon-paste electrode. Anal. Sci. 25, 1227–1230 (2009)CrossRefGoogle Scholar
  18. 18.
    Abdel-Ghani, N.T., Shoukry, A.F., Hussein, S.H.: Flow injection potentiometric determination of amantadine HCl. J. Pharmaceut. Biomed. 30, 601–611 (2002)CrossRefGoogle Scholar
  19. 19.
    Szejtli, J.: Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 98, 1743–1754 (1998)CrossRefGoogle Scholar
  20. 20.
    Gaichore, R.R., Srivastava, A.K.: Voltammetric determination of nifedipine using a β-cyclodextrin modified multi-walled carbon nanotube paste electrode. Sens. Actuat. B-Chem. 188, 1328–1337 (2013)CrossRefGoogle Scholar
  21. 21.
    Wang, L., Lei, J., Ma, R., Ju, H.: Host–guest interaction of adamantine with a β-cyclodextrin-functionalized AuPd bimetallic nanoprobe for ultrasensitive electrochemical immunoassay of small molecules. Anal. Chem. 85, 6505–6510 (2013)CrossRefGoogle Scholar
  22. 22.
    Song, J.-P., Guo, Y.-J., Shuang, S.-M., Dong, C.: Study on the inclusion interaction of ethyl violet with cyclodextrins by MWNTs/Nafion modified glassy carbon electrode. J. Incl. Phenom. Macrocycl. Chem. 68, 467–473 (2010)CrossRefGoogle Scholar
  23. 23.
    Yang, Y., Yang, X., Yang, H.F., Liu, Z.M., Liu, Y.L., Shen, G.L., Yu, R.Q.: Electrochemical sensor for cinchonine based on a competitive host-guest complexation. Anal. Chim. Acta 528, 135–142 (2005)CrossRefGoogle Scholar
  24. 24.
    Choi, S.J., Choi, B.G., Park, S.M.: Electrochemical sensor for electrochemically inactive β-d(+)-glucose using α-cyclodextrin template molecules. Anal. Chem. 74, 1998–2002 (2002)CrossRefGoogle Scholar
  25. 25.
    Ferancová, A., Labuda, J.: Cyclodextrins as electrode modifiers. Fresenius J. Anal. Chem. 370, 1–10 (2001)CrossRefGoogle Scholar
  26. 26.
    Gelb, R.I., Schwartz, L.M., Laufer, D.A.: Adamantan-I-ylamine and adamantan-I-ylamine hydrochloride complexes with cycloamyloses. J. Chem Soc. Perkin Trans. 2, 15–21 (1984)CrossRefGoogle Scholar
  27. 27.
    Matsue, T., Evans, D.H., Osa, T., Kobayashi, N.: Electron-transfer reactions associated with host-guest complexation. Oxidation of ferrocenecarboxylic acid in the presence of beta-cyclodextrin. J. Am. Chem. Soc. 107, 3411–3417 (1985)CrossRefGoogle Scholar
  28. 28.
    Siegel, B., Breslow, R.: Lyophobic binding of substrates by cyclodextrins in nonaqueous solvents. J. Am. Chem. Soc. 97, 6869–6870 (1975)CrossRefGoogle Scholar
  29. 29.
    Ferancová, A., Korgová, E., Mikó, R., Labuda, J.: Determination of tricyclic antidepressants using a carbon paste electrode modified with β-cyclodextrin. J. Electroanal. Chem. 492, 74–77 (2000)CrossRefGoogle Scholar
  30. 30.
    Gomez, M.E., Kaifer, A.: Voltammetric behavior of a ferrocene derivative. A comparison using surface-confined and diffusion-controlled species. J. Chem. Edu. 69, 502–505 (1992)Google Scholar
  31. 31.
    Connors, K.A.: The stability of cyclodextrin complexes in solution. Chem. Rev. 97, 1325–1357 (1997)CrossRefGoogle Scholar
  32. 32.
    Strelets, V.V., Mamedjarova, I.A., Nefedova, M.N., Pysnograeva, N.I., Sokolov, V.I., PospiSil, L., Hanzllk, J.: Electrochemistry of inclusion complexes of organometallics complexation of ferrocene and azaferrocene by cyclodextrin. J. Electroanal. Chem. 310, 179–186 (1991)CrossRefGoogle Scholar
  33. 33.
    Bard, A.J., Faulkner, L.R.: Electrochemical Methods Fundamentals and Applications, 2nd edn. Wiley, New York (2001)Google Scholar
  34. 34.
    Rekharsky, M.V., Inoue, Y.: Complexation thermodynamics of cyclodextrins. Chem. Rev. 98, 1875–1917 (1998)CrossRefGoogle Scholar
  35. 35.
    Maeda, Y., Fukuda, T., Yamamoto, H., Kitano, H.: Regio- and stereoselective complexation by a self-assembled monolayer of thiolated cyclodextrin on a gold electrode. Langmuir 13, 4187–4189 (1997)CrossRefGoogle Scholar
  36. 36.
    Rojas, M.T., Koeniger, R., Stoddart, J.F., Kaifer, A.E.: Supported monolayers containing preformed binding sites. Synthesis and interfacial binding properties of a thiolated beta-cyclodextrin derivative. J. Am. Chem. Soc. 117(1), 336–343 (1995)CrossRefGoogle Scholar
  37. 37.
    Spector, R.: Transport of amantadine and rimantadine through the blood–brain barrier. J. Pharmacol. Exp. Ther. 244, 516–519 (1988)Google Scholar
  38. 38.
    Miller, J.N., Miller, J.C.: Statistics and Chemometrics for Analytical Chemistry, 5th edn. Pearson Education, Harlow (2005)Google Scholar
  39. 39.
    Arndt, T., Guessregen, B., Hohl, A., Reis, J.: Determination of serum amantadine by liquid chromatography-tandem mass spectrometry. Clin. Chim. Acta 359, 125–131 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of ChemistryRazi UniversityKermanshahIran

Personalised recommendations