Synthesis of C 3 -symmetric tri(alkylamino) guests and their interaction with cyclodextrins

  • Tereza Bednaříková
  • Zdeněk Tošner
  • Jiří Horský
  • Jindřich Jindřich
Original Article


The synthesis of a series of star-shaped C 3 -symmetric amines and their inclusion complexation properties toward α-, β-, γ-cyclodextrins and their permethylated derivatives has been described. The star molecules comprise of 1,3,5-trisubstited benzene core and the points formed by (alkylamino)methyl or 4-((alkylamino)methyl)phenyl groups. The modes of host–guest interaction were studied by UV–Vis spectroscopy, ITC, 1H NMR and 2D-NMR (NOESY). It was found that star molecules containing (tert-butylamino)methyl, (adamantan-1-ylamino)methyl, 4-((isopropylamino)methyl)phenyl, 4-((tert-butylamino)methyl)phenyl and protonated 4-((adamantan-1-ylamino)methyl)phenyl points form strong host–guest complexes with β-cyclodextrin. It was also proved that the largest C 3 -symmetric guest can form complexes with β-cyclodextrin with stoichiometry 3 which is required for construction of dendrimer supramolecular structures. None of the investigated amines forms a strong complex with permethylated cyclodextrins.


Cyclodextrin Supramolecular interactions C3-symmetric guests Inclusion complexes 



This work was supported by the Ministry of Education, Youth, and Sports of the Czech Republic (project No. MSM0021620857) and Grant Agency of the Czech Republic (project No. 13-01440S). Help of Dr. S. Filippov with ITC measurements is appreciated.

Supplementary material

10847_2014_443_MOESM1_ESM.docx (11 kb)
Supplementary material 1 (DOCX 10 kb)
10847_2014_443_MOESM2_ESM.pdf (1.2 mb)
Supplementary material 2 (PDF 1202 kb)


  1. 1.
    Szejtli, J.: Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 98, 1743–1753 (1998)CrossRefGoogle Scholar
  2. 2.
    Khan, A.R., Forgo, P., Stine, K.J., D’Souza, V.T.: Methods for selective modifications of cyclodextrins. Chem. Rev. 98, 1977–1996 (1998)CrossRefGoogle Scholar
  3. 3.
    Fielding, L., McKellar, S.C., Florence, A.J.: Precision studies in supramolecular chemistry: a 1H NMR study of hydroxymethoxyacetophenone/β-cyclodextrin complexes. Magn. Reson. Chem. 49, 405–412 (2011)CrossRefGoogle Scholar
  4. 4.
    Entrena, A., Jaime, C.: Cyclodextrin inclusion complexes. molecular mechanics calculations on the modification of π-face selectivity†. J. Org. Chem. 62, 5923–5927 (1997)CrossRefGoogle Scholar
  5. 5.
    Schneider, H.-J., Hacket, F., Rüdiger, V., Ikeda, H.: NMR studies of cyclodextrins and cyclodextrin complexes. Chem. Rev. 98, 1755–1785 (1998)CrossRefGoogle Scholar
  6. 6.
    Tošner, Z., Aski, S.N., Kowalewski, J.: Rotational dynamics of adamantanecarboxylic acid in complex with β-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 55, 59–70 (2006)CrossRefGoogle Scholar
  7. 7.
    Stojanov, M., Wimmer, R., Larsen, K.L.: Study of the inclusion complexes formed between cetirizine and α-, β-, and γ-cyclodextrin and evaluation on their taste-masking properties. J. Pharm. Sci. 100, 3177–3185 (2011)CrossRefGoogle Scholar
  8. 8.
    Guerrero-Martínez, A., Montoro, T., Viñas, M.H., Tardajos, G.: Complexation and chiral drug recognition of an amphiphilic phenothiazine derivative with β-cyclodextrin. J. Pharm. Sci. 97, 1484–1498 (2008)CrossRefGoogle Scholar
  9. 9.
    Roik, N.V., Belyakova, L.A.: Thermodynamic, IR spectral and X-ray diffraction studies of the “β-cyclodextrin-para-aminobenzoic acid” inclusion complex. J. Incl. Phenom. Macrocycl. Chem. 69, 315–319 (2010)CrossRefGoogle Scholar
  10. 10.
    Wenz, G., Han, B.-H., Müller, A.: Cyclodextrin Rotaxanes and Polyrotaxanes. Chem. Rev. 106, 782–817 (2006)CrossRefGoogle Scholar
  11. 11.
    Harada, A., Takashima, Y., Yamaguchi, H.: Cyclodextrin-based supramolecular polymers. Chem. Soc. Rev. 38, 875–882 (2009)CrossRefGoogle Scholar
  12. 12.
    Chen, Y., Zhang, Y.-M., Liu, Y.: Multidimensional nanoarchitectures based on cyclodextrins. Chem. Commun. 46, 5622–5633 (2010)CrossRefGoogle Scholar
  13. 13.
    Ilioudis, C.A., Tocher, D.A., Steed, J.W.: A highly efficient, preorganized macrobicyclic receptor for halides based on ch··· and nh···anion interactions. J. Am. Chem. Soc. 126, 12395–12402 (2004)CrossRefGoogle Scholar
  14. 14.
    Han, W., Liu, C., Jin, Z.: Aerobic ligand-free suzuki coupling reaction of aryl chlorides catalyzed byin situ generated palladium nanoparticles at room temperature. Adv. Synth. Catal. 350, 501–508 (2008)CrossRefGoogle Scholar
  15. 15.
    Kathiresan, M., Walder, L., Ye, F., Reuter, H.: Viologen-based benzylic dendrimers: selective synthesis of 3,5-bis(hydroxymethyl)benzylbromide and conformational analysis of the corresponding viologen dendrimer subunit. Tetrahedron Lett. 51, 2188–2192 (2010)CrossRefGoogle Scholar
  16. 16.
    Nakazaki, M., Yamamoto, K., Toya, T.: Syntheses and chemical characterization of tris-bridged [2.2.2]cyclophanes with a triphenylmethyl component. J. Org. Chem. 46, 1611–1615 (1981)CrossRefGoogle Scholar
  17. 17.
    Wenz, G.: Influence of intramolecular hydrogen bonds on the binding potential of methylated β-cyclodextrin derivatives. Beilstein J. Org. Chem. 8, 1890–1895 (2012)CrossRefGoogle Scholar
  18. 18.
    Rekharsky, M.V., Inoue, Y.: Complexation Thermodynamics of Cyclodextrins. Chem. Rev. 98, 1875–1918 (1998)CrossRefGoogle Scholar
  19. 19.
    Ernst, R.R., Bodenhausen, G., Wokaun, A.: Principles of nuclear magnetic resonance in one and two dimensions. Clarendon Press, Oxford (1990)Google Scholar
  20. 20.
    Nakazono, K., Takashima, T., Arai, T., Koyama, Y., Takata, T.: High-yield One-pot synthesis of permethylated α-cyclodextrin-based polyrotaxane in hydrocarbon solvent through an efficient heterogeneous reaction. Macromolecules 43, 691–696 (2010)CrossRefGoogle Scholar
  21. 21.
    Iannazzo, L., Vollhardt, K.P.C., Malacria, M., Aubert, C., Gandon, V.: Alkynylboronates and -boramides in coi- and RhI-catalyzed [2 + 2+2] cycloadditions: construction of oligoaryls through selective suzuki couplings. Eur. J. Org. Chem. 2011, 3283–3292 (2011)CrossRefGoogle Scholar
  22. 22.
    Brunel, J., Mongin, O., Jutand, A., Ledoux, I., Zyss, J., Blanchard-Desce, M.: Propeller-shaped octupolar molecules derived from triphenylbenzene for nonlinear optics: synthesis and optical studies. Chem. Mater. 15, 4139–4148 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Tereza Bednaříková
    • 1
  • Zdeněk Tošner
    • 2
  • Jiří Horský
    • 3
  • Jindřich Jindřich
    • 1
  1. 1.Department of Organic Chemistry, Faculty of ScienceCharles University in PraguePraha 2Czech Republic
  2. 2.NMR Laboratory, Faculty of ScienceCharles University in PraguePrague 2Czech Republic
  3. 3.Institute of Macromolecular ChemistryPrague 6Czech Republic

Personalised recommendations