Thermally induced molecular imprinting of luminescent vesicles

Original Article


Thermal imprinting of the lipid-water interface of phospholipid vesicles is achieved by reversible non-covalent assembly of membrane embedded amphiphilic metal complexes. The complexes have affinity to phosphate and imidazole groups and are preorganized by a phosphorylated hexapeptide template above the phase transition temperature. The template induced patterning is transferred into the gel phase of the membrane by cooling below the transition temperature. This limits the lateral diffusion and stabilizes the metal complex receptor organization, as confirmed by FRET measurements with dye-labeled receptors. After template removal an enhanced rebinding affinity of one order of magnitude for the target peptide was observed for the imprinted membranes compared to identical non-imprinted interfaces.

Graphical abstract


Non-covalent imprinting Template induced patterning Functionalized vesicles Specific recognition sites FRET Emission titrations 

Supplementary material

10847_2014_442_MOESM1_ESM.pdf (914 kb)
Supplementary material 1 (PDF 914 kb)


  1. 1.
    Chen, L., Xu, S., Li, J.: Recent advances in molecular imprinting technology: current status, challenges and highlighted applications. Chem. Soc. Rev. 40(5), 2922–2942 (2011)CrossRefGoogle Scholar
  2. 2.
    Wulff, G.: Molecular imprinting in cross-linked materials with the aid of molecular templates: a way towards artificial antibodies. Angew. Chem. Int. Ed. Engl. 34(17), 1812–1832 (1995)CrossRefGoogle Scholar
  3. 3.
    Mosbach, K., Ramstrom, O.: The emerging technique of molecular imprinting and its future impact on biotechnology. Nat. Biotechnol. 14(2), 163–170 (1996)CrossRefGoogle Scholar
  4. 4.
    Sellergren, B.: Noncovalent molecular imprinting: antibody-like molecular recognition in polymeric network materials. TrAC Trends Anal. Chem. 16(6), 310–320 (1997)CrossRefGoogle Scholar
  5. 5.
    Haupt, K., Mosbach, K.: Molecularly imprinted polymers and their use in biomimetic sensors. Chem. Rev. 100(7), 2495–2504 (2000)CrossRefGoogle Scholar
  6. 6.
    Vlatakis, G., Andersson, L.I., Muller, R., Mosbach, K.: Drug assay using antibody mimics made by molecular imprinting. Nature 361(6413), 645–647 (1993)CrossRefGoogle Scholar
  7. 7.
    Sibrian-Vazquez, M., Spivak, D.A.: Molecular imprinting made easy. J. Am. Chem. Soc. 126(25), 7827–7833 (2004)CrossRefGoogle Scholar
  8. 8.
    Liang, R.-N., Song, D.-A., Zhang, R.-M., Qin, W.: Potentiometric sensing of neutral species based on a uniform-sized molecularly imprinted polymer as a receptor. Angew. Chem. Int. Ed. 49(14), 2556–2559 (2010)CrossRefGoogle Scholar
  9. 9.
    Bures, P., Huang, Y., Oral, E., Peppas, N.A.: Surface modifications and molecular imprinting of polymers in medical and pharmaceutical applications. J. Controlled Release 72(1–3), 25–33 (2001)CrossRefGoogle Scholar
  10. 10.
    Wulff, G., Liu, J.: Design of biomimetic catalysts by molecular imprinting in synthetic polymers: the role of transition state stabilization. Acc. Chem. Res. 45(2), 239–247 (2011)CrossRefGoogle Scholar
  11. 11.
    Wulff, G.: Enzyme-like catalysis by molecularly imprinted polymers. Chem. Rev. 102(1), 1–28 (2002)CrossRefGoogle Scholar
  12. 12.
    Muratsugu, S., Tada, M.: Molecularly imprinted Ru complex catalysts integrated on oxide surfaces. Acc. Chem. Res. 46(2), 300–311 (2012)CrossRefGoogle Scholar
  13. 13.
    Cutivet, A., Schembri, C., Kovensky, J., Haupt, K.: Molecularly imprinted microgels as enzyme inhibitors. J. Am. Chem. Soc. 131(41), 14699–14702 (2009)CrossRefGoogle Scholar
  14. 14.
    Manetsch, R., Krasiński, A., Radić, Z., Raushel, J., Taylor, P., Sharpless, K.B., Kolb, H.C.: In situ click chemistry: enzyme inhibitors made to their own specifications. J. Am. Chem. Soc. 126(40), 12809–12818 (2004)CrossRefGoogle Scholar
  15. 15.
    Mosbach, K., Yu, Y., Andersch, J., Ye, L.: Generation of new enzyme inhibitors using imprinted binding sites: the anti-idiotypic approach, a step toward the next generation of molecular imprinting. J. Am. Chem. Soc. 123(49), 12420–12421 (2001)CrossRefGoogle Scholar
  16. 16.
    Meggers, E.: From conventional to unusual enzyme inhibitor scaffolds: the quest for target specificity. Angew. Chem. Int. Ed. 50(11), 2442–2448 (2011)CrossRefGoogle Scholar
  17. 17.
    Cai, D., Ren, L., Zhao, H., Xu, C., Zhang, L., Yu, Y., Wang, H., Lan, Y., Roberts, M.F., Chuang, J.H., Naughton, M.J., Ren, Z., Chiles, T.C.: A molecular-imprint nanosensor for ultrasensitive detection of proteins. Nat. Nano. 5(8), 597–601 (2010)CrossRefGoogle Scholar
  18. 18.
    Zheng, C., Zhang, X.-L., Liu, W., Liu, B., Yang, H.-H., Lin, Z.-A., Chen, G.-N.: A selective artificial enzyme inhibitor based on nanoparticle-enzyme interactions and molecular imprinting. Adv. Mater. 25(41), 5922–5927 (2013)CrossRefGoogle Scholar
  19. 19.
    Ki, C.D., Oh, C., Oh, S.-G., Chang, J.Y.: The use of a thermally reversible bond for molecular imprinting of silica spheres. J. Am. Chem. Soc. 124(50), 14838–14839 (2002)CrossRefGoogle Scholar
  20. 20.
    Gauczinski, J., Liu, Z., Zhang, X., Schönhoff, M.: Surface molecular imprinting in layer-by-layer films on silica particles. Langmuir 28(9), 4267–4273 (2012)CrossRefGoogle Scholar
  21. 21.
    Zhang, H., Jiang, J., Zhang, H., Zhang, Y., Sun, P.: Efficient synthesis of molecularly imprinted polymers with enzyme inhibition potency by the controlled surface imprinting approach. ACS Macro Lett. 2(6), 566–570 (2013)CrossRefGoogle Scholar
  22. 22.
    Li, Y., Dong, C., Chu, J., Qi, J., Li, X.: Surface molecular imprinting onto fluorescein-coated magnetic nanoparticles via reversible addition fragmentation chain transfer polymerization: a facile three-in-one system for recognition and separation of endocrine disrupting chemicals. Nanoscale 3(1), 280–287 (2011)CrossRefGoogle Scholar
  23. 23.
    Wulff, G., Chong, B.-O., Kolb, U.: Soluble single-molecule nanogels of controlled structure as a matrix for efficient artificial enzymes. Angew. Chem. Int. Ed. 45(18), 2955–2958 (2006)CrossRefGoogle Scholar
  24. 24.
    Resmini, M.: Molecularly imprinted polymers as biomimetic catalysts. Anal. Bioanal. Chem. 402(10), 3021–3026 (2012)CrossRefGoogle Scholar
  25. 25.
    Pan, G., Zhang, Y., Ma, Y., Li, C., Zhang, H.: Efficient one-pot synthesis of water-compatible molecularly imprinted polymer microspheres by facile RAFT precipitation polymerization. Angew. Chem. Int. Ed. 50(49), 11731–11734 (2011)CrossRefGoogle Scholar
  26. 26.
    Benito-Peña, E., Martins, S., Orellana, G., Moreno-Bondi, M.C.: Water-compatible molecularly imprinted polymer for the selective recognition of fluoroquinolone antibiotics in biological samples. Anal. Bioanal. Chem. 393(1), 235–245 (2009)CrossRefGoogle Scholar
  27. 27.
    Banerjee, S., König, B.: Molecular imprinting of luminescent vesicles. J. Am. Chem. Soc. 135(8), 2967–2970 (2013)CrossRefGoogle Scholar
  28. 28.
    Bayerl, T., Decher, G., Braunschweig, T.: Imprinted amphiphilic molecules having hydrophobic tail groups and hydrophilic head groups forming three-dimensional molecular imprinted surface at solid/liquid interface; for molecular separation, isolation, purification or catalyzation. In. US006051372AGoogle Scholar
  29. 29.
    Kondo, Y., Yoshikawa, M., Okushita, H.: Molecularly imprinted polyamide membranes for chiral recognition. Polym. Bull. 44(5–6), 517–524 (2000)CrossRefGoogle Scholar
  30. 30.
    Byrne, M.E., Park, K., Peppas, N.A.: Molecular imprinting within hydrogels. Adv. Drug Deliv. Rev. 54(1), 149–161 (2002)CrossRefGoogle Scholar
  31. 31.
    Pan, G., Guo, Q., Cao, C., Yang, H., Li, B.: Thermo-responsive molecularly imprinted nanogels for specific recognition and controlled release of proteins. Soft Matter 9(14), 3840–3850 (2013)CrossRefGoogle Scholar
  32. 32.
    Alvarez-Lorenzo, C., Guney, O., Oya, T., Sakai, Y., Kobayashi, M., Enoki, T., Takeoka, Y., Ishibashi, T., Kuroda, K., Tanaka, K., Wang, G., Grosberg, A.Y., Masamune, S., Tanaka, T.: Reversible adsorption of calcium ions by imprinted temperature sensitive gels. J. Chem. Phys. 114(6), 2812–2816 (2001)CrossRefGoogle Scholar
  33. 33.
    Zimmerman, S.C., Lemcoff, N.G.: Synthetic hosts via molecular imprinting - are universal synthetic antibodies realistically possible? Chem. Commun. 1, 5–14 (2004)CrossRefGoogle Scholar
  34. 34.
    Hiratani, H., Alvarez-Lorenzo, C., Chuang, J., Guney, O., Grosberg, A.Y., Tanaka, T.: Effect of reversible cross-linker, N, N‘-bis(acryloyl)cystamine, on calcium ion adsorption by imprinted gels. Langmuir 17(14), 4431–4436 (2001)CrossRefGoogle Scholar
  35. 35.
    Gruber, B., Stadlbauer, S., Späth, A., Weiss, S., Kalinina, M., König, B.: Modular chemosensors from self-assembled vesicle membranes with amphiphilic binding sites and reporter dyes. Angew. Chem. Int. Ed. 49(39), 7125–7128 (2010)CrossRefGoogle Scholar
  36. 36.
    Gruber, B., Stadlbauer, S., Woinaroschy, K., König, B.: Luminescent vesicular receptors for the recognition of biologically important phosphate species. Org. Biomol. Chem. 8(16), 3704–3714 (2010)CrossRefGoogle Scholar
  37. 37.
    Grauer, A., Riechers, A., Ritter, S., König, B.: Synthetic receptors for the differentiation of phosphorylated peptides with nanomolar affinities. Chem. Eur. J. 14(29), 8922–8927 (2008)CrossRefGoogle Scholar
  38. 38.
    Binder, W.H., Barragan, V., Menger, F.M.: Domains and rafts in lipid membranes. Angew. Chem. Int. Ed. 42(47), 5802–5827 (2003)CrossRefGoogle Scholar
  39. 39.
    Grochmal, A., Ferrero, E., Milanesi, L., Tomas, S.: Modulation of in-membrane receptor clustering upon binding of multivalent ligands. J. Am. Chem. Soc. 135(27), 10172–10177 (2013)CrossRefGoogle Scholar
  40. 40.
    Gruber, B., Balk, S., Stadlbauer, S., König, B.: Dynamic interface imprinting: high-affinity peptide binding sites assembled by analyte-induced recruiting of membrane receptors. Angew. Chem. Int. Ed. 51(40), 10060–10063 (2012)CrossRefGoogle Scholar
  41. 41.
    Gruber, B., König, B.: Self-assembled vesicles with functionalized membranes. Chem. Eur. J. 19(2), 438–448 (2013)CrossRefGoogle Scholar
  42. 42.
    Tamm, L.K., McConnell, H.M.: Supported phospholipid bilayers. Biophys. J. 47(1), 105–113 (1985)CrossRefGoogle Scholar
  43. 43.
    Lentz, B.R., Barenholz, Y., Thompson, T.E.: Fluorescence depolarization studies of phase transitions and fluidity in phospholipid bilayers. 1. Single component phosphatidylcholine liposomes. Biochemistry 15(20), 4521–4528 (1976)CrossRefGoogle Scholar
  44. 44.
    Watts, A., Marsh, D., Knowles, P.F.: Characterization of dimyristoylphosphatidylcholine vesicles and their dimensional changes through the phase transition: molecular control of membrane morphology. Biochemistry 17(9), 1792–1801 (1978)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Faculty of Chemistry and PharmacyUniversity of RegensburgRegensburgGermany

Personalised recommendations