Advertisement

Molecular recognition and self-assembly of pillarenes

  • Li-Li Tan
  • Ying-Wei Yang
Review Article

Abstract

As a rapidly developing class of synthetic macrocycles with intrinsic characteristics and properties, pillarenes (or pillararenes) have become more and more attractive on account of their unique features and potentials in fabricating functional materials. This feature article provides an overview of molecular recognition and self-assembly of pillarenes. The host–guest motifs, building strategies, topological architectures, stimuli-responsiveness, functionalities and various supramolecular assemblies including mechanically interlocked molecules containing rotaxanes, polyrotaxanes and catenanes, self-inclusion complexes, supramolecular dimers and polymers, micelles, vesicles, tubes and artificial transmembrane channels are comprehensively discussed. Prospects about future research directions and applications in this research area are predicted.

Keywords

Pillarenes Recognition Self-assembly Supramolecular chemistry Supramolecular polymers Synthetic macrocycle 

Notes

Acknowledgments

This research was supported by the National Natural Science Foundation of China (21272093), the Specialized Research Fund for the Doctoral Program of Higher Education of China (20120061120117), and the Innovation Program of the State Key Laboratory of Supramolecular Structure and Materials.

References

  1. 1.
    Lehn, J.-M.: Supramolecular chemistry: from molecular information toward self-organization and complex matter. Rep. Prog. Phys. 67, 249–265 (2004)CrossRefGoogle Scholar
  2. 2.
    Dong, S., Zheng, B., Wang, F., Huang, F.: Supramolecular polymers constructed from macrocycle-based host–guest molecular recognition motifs. Acc. Chem. Res. 47, 1982–1994 (2014)CrossRefGoogle Scholar
  3. 3.
    Yang, H., Yuan, B., Zhang, X., Scherman, O.A.: Supramolecular chemistry at interfaces: host–guest interactions for fabricating multifunctional biointerfaces. Acc. Chem. Res. 47, 2106–2115 (2014)CrossRefGoogle Scholar
  4. 4.
    Yang, Y.-W., Sun, Y.-L., Song, N.: Switchable host–guest systems on surfaces. Acc. Chem. Res. 47, 1950–1960 (2014)CrossRefGoogle Scholar
  5. 5.
    Yang, Y.-W.: Towards biocompatible nanovalves based on mesoporous silica nanoparticles. Med. Chem. Commun. 2, 1033–1049 (2012)CrossRefGoogle Scholar
  6. 6.
    Fyfe, M.C.T., Stoddart, J.F.: Synthetic supramolecular chemistry. Acc. Chem. Res. 30, 393–401 (1997)CrossRefGoogle Scholar
  7. 7.
    Dsouza, R.N., Pischel, U., Nau, W.M.: Fluorescent dyes and their supramolecular host/guest complexes with macrocycles in aqueous solution. Chem. Rev. 111, 7941–7980 (2011)CrossRefGoogle Scholar
  8. 8.
    Liu, Y., Yang, Y.-W., Li, L., Chen, Y.: Cooperative molecular recognition of dyes by dyad and triad cyclodextrin–crown ether conjugates. Org. Biomol. Chem. 2, 1542–1548 (2004)CrossRefGoogle Scholar
  9. 9.
    Li, Z., Liu, G., Xue, W., Wu, D., Yang, Y.-W., Wu, J., Liu, S.H., Yoon, J., Yin, J.: Construction of hetero[n]rotaxanes using polyfunctional rotaxane frameworks. J. Org. Chem. 78, 11560–11570 (2013)CrossRefGoogle Scholar
  10. 10.
    Fang, L., Hmadeh, M., Wu, J., Olson, M.A., Spruell, J.M., Trabolsi, A., Yang, Y.-W., Elhabiri, M., Albrecht-Gary, A.M., Stoddart, J.F.: Acid–base actuation of [c2]daisy chains. J. Am. Chem. Soc. 131, 7126–7134 (2009)CrossRefGoogle Scholar
  11. 11.
    Li, H., Cheng, C., McGonigal, P.R., Fahrenbach, A.C., Frasconi, M., Liu, W.-G., Zhu, Z., Zhao, Y., Ke, C., Lei, J., Young, R.M., Dyar, S.M., Co, D.T., Yang, Y.-W., Botros, Y.Y., Goddard III, W.A., Wasielewski, M.R., Astumian, R.D., Stoddart, J.F.: Relative unidirectional translation in an artificial molecular assembly fueled by light. J. Am. Chem. Soc. 135, 18609–18620 (2013)CrossRefGoogle Scholar
  12. 12.
    Liu, Y., Yang, Y.-W., Yang, E.-C., Guan, X.-D.: Molecular recognition thermodynamics and structural elucidation of interactions between steroids and bridged bis(β-cyclodextrin)s. J. Org. Chem. 69, 6590–6602 (2004)CrossRefGoogle Scholar
  13. 13.
    Liu, Y., Yang, Y.-W., Song, Y., Zhang, H.-Y., Ding, F., Wada, T., Inoue, Y.: Residue and sequence selective binding of non-aromatic dipeptides by bis(β-cyclodextrin) with functional tether. ChemBioChem 5, 868–871 (2004)CrossRefGoogle Scholar
  14. 14.
    Yang, Y.-W., Chen, Y., Liu, Y.: Linear polypseudorotaxanes possessing many metal centers constructed from inclusion complexes of α, β, γ-cyclodextrins with 4,4′-dipyridine. Inorg. Chem. 45, 3014–3022 (2006)CrossRefGoogle Scholar
  15. 15.
    Liu, Y., Yang, Y.-W., Chen, Y., Zou, H.-X.: Polyrotaxane with cyclodextrins as stoppers and its assembly behavior. Macromolecules 38, 5838–5840 (2005)CrossRefGoogle Scholar
  16. 16.
    Li, Q.-L., Wang, L.-Z., Qiu, X.-L., Sun, Y.-L., Wang, P.-X., Liu, Y., Li, F., Qi, A.-D., Gao, H., Yang, Y.-W.: Stimuli-responsive biocompatible nanovalve based on β-cyclodextrin modified poly(glycidyl methacrylate). Polym. Chem. 5, 3389–3395 (2014)CrossRefGoogle Scholar
  17. 17.
    Isaacs, L.: Cucurbit[n]urils: from mechanism to structure and function. Chem. Commun. 6, 619–629 (2009)CrossRefGoogle Scholar
  18. 18.
    Kim, J., Jung, I.-S., Kim, S.-Y., Lee, E., Kang, J.-K., Sakamoto, S., Yamaguchi, K., Kim, K.: New cucurbituril homologues: syntheses, isolation, characterization, and X-ray crystal structures of cucurbit[n]uril (n = 5, 7, and 8). J. Am. Chem. Soc. 122, 540–541 (2000)CrossRefGoogle Scholar
  19. 19.
    Lagona, J., Mukhopadhyay, P., Chakrabarti, S., Isaacs, L.: The cucurbit[n]uril family. Angew. Chem. Int. Ed. 44, 4844–4870 (2005)CrossRefGoogle Scholar
  20. 20.
    Sun, Y.-L., Yang, B.-J., Zhang, S.X.-A., Yang, Y.-W.: Cucurbit[7]uril pseudorotaxane-based photo-responsive supramolecular nanovalve. Chem. Eur. J. 18, 9212–9216 (2012)CrossRefGoogle Scholar
  21. 21.
    Li, H., Tan, L.-L., Jia, P., Li, Q.-L., Sun, Y.-L., Zhang, J., Ning, Y.-Q., Yu, J., Yang, Y.-W.: Near-infrared light-responsive supramolecular nanovalve based on mesoporous silica-coated gold nanorods. Chem. Sci. 5, 2804–2808 (2014)CrossRefGoogle Scholar
  22. 22.
    Zhou, Y., Tan, L.-L., Li, Q.-L., Qiu, X.-L., Qi, A.-D., Tao, Y., Yang, Y.-W.: Acetylcholine-triggered cargo release from supramolecular nanovalves based on different macrocyclic receptors. Chem. Eur. J. 20, 2998–3004 (2014)CrossRefGoogle Scholar
  23. 23.
    Sun, Y.-L., Zhou, Y., Li, Q.-L., Yang, Y.-W.: Enzyme-responsive supramolecular nanovalves crafted by mesoporous silica nanoparticles and choline-sulfonatocalix[4]arene [2]pseudorotaxanes for controlled cargo release. Chem. Commun. 49, 9033–9035 (2013)CrossRefGoogle Scholar
  24. 24.
    Ogoshi, T., Kanai, S., Fujinami, S., Yamagishi, T., Nakamoto, Y.: Para-bridged symmetrical pillar[5]arenes: their Lewis acid catalyzed synthesis and host–guest property. J. Am. Chem. Soc. 130, 5022–5023 (2008)CrossRefGoogle Scholar
  25. 25.
    Xue, M., Yang, Y., Chi, X., Zhang, Z., Huang, F.: Pillararenes, a new class of macrocycles for supramolecular chemistry. Acc. Chem. Res. 45, 1294–1308 (2012)CrossRefGoogle Scholar
  26. 26.
    Ogoshi, T., Yamagishi, T.: Pillar[5]- and pillar[6]arene-based supramolecular assemblies built by using their cavity-size-dependent host–guest interactions. Chem. Commun. 50, 4776–4787 (2014)CrossRefGoogle Scholar
  27. 27.
    Zhang, H., Zhao, Y.: Pillararene-based assemblies: design principle, preparation and applications. Chem. Eur. J. 19, 16862–16879 (2013)CrossRefGoogle Scholar
  28. 28.
    Cragg, P.J., Sharma, K.: Pillar[5]arenes: fascinating cyclophanes with a bright future. Chem. Soc. Rev. 41, 597–607 (2012)CrossRefGoogle Scholar
  29. 29.
    Zhang, H., Liu, Z., Xin, F., Hao, A.: Synthesis and application of pillar[n]arene. Chin. J. Org. Chem. 32, 219–229 (2012)CrossRefGoogle Scholar
  30. 30.
    Wang, K., Yang, Y.-W., Zhang, S.X.-A.: Research progress on the synthesis of pillar[n]arenes and their host–guest chemistry. Chem. J. Chin. Univ. 33, 1–13 (2012)CrossRefGoogle Scholar
  31. 31.
    Ogoshi, T., Yamagishi, T.: Pillararenes: versatile synthetic receptors for supramolecular chemistry. Eur. J. Org. Chem. 15, 2961–2975 (2013)CrossRefGoogle Scholar
  32. 32.
    Ogoshi, T.: Synthesis of novel pillar-shaped cavitands “Pillar[5]arenes” and their application for supramolecular materials. J. Incl. Phenom. Macrocycl. Chem 72, 247–262 (2012)CrossRefGoogle Scholar
  33. 33.
    Cao, D., Kou, Y., Liang, J., Chen, Z., Wang, L., Meier, H.: A facile and efficient preparation of pillararenes and a pillarquinone. Angew. Chem. Int. Ed. 48, 9721–9723 (2009)CrossRefGoogle Scholar
  34. 34.
    Tao, H.Q., Cao, D.R., Liu, L.Z., Kou, Y.H., Wang, L.Y., Meier, H.: Synthesis and host–guest properties of pillar[6]arenes. Sci. China Chem. 55, 223–228 (2012)CrossRefGoogle Scholar
  35. 35.
    Chen, Y., Tao, H.Q., Kou, Y.H., Meier, H., Fu, J.L., Cao, D.R.: Synthesis of pillar[7]arene. Chin. Chem. Lett. 23, 509–511 (2012)CrossRefGoogle Scholar
  36. 36.
    Ma, Y., Zhang, Z., Ji, X., Han, C., He, J., Abliz, Z., Chen, W., Huang, F.: Preparation of pillar[n]arenes by cyclooligomerization of 2,5-dialkoxybenzyl alcohols or 2,5-dialkoxybenzyl bromides. Eur. J. Org. Chem. 2011, 5331–5335 (2011)Google Scholar
  37. 37.
    Schneebeli, S.T., Cheng, C., Hartlieb, K.J., Strutt, N.L., Sarjeant, A.A., Stern, C.L., Stoddart, J.F.: Asararenes—a family of large aromatic macrocycles. Chem. Eur. J. 19, 3860–3868 (2013)CrossRefGoogle Scholar
  38. 38.
    Ogoshi, T., Ueshima, N., Akutsu, T., Yamafuji, D., Furuta, T., Sakakibara, F., Yamagishi, T.: The template effect of solvents on high yield synthesis, co-cyclization of pillar[6]arenes and interconversion between pillar[5]- and pillar[6]arenes. Chem. Commun. 50, 5774–5777 (2014)CrossRefGoogle Scholar
  39. 39.
    Ogoshi, T., Aoki, T., Kitajima, K., Fujinami, S., Yamagishi, T., Nakamoto, Y.: Facile, rapid, and high-yield synthesis of pillar[5]arene from commercially available reagents and its X-ray crystal structure. J. Org. Chem. 76, 328–331 (2011)CrossRefGoogle Scholar
  40. 40.
    Ogoshi, T., Yamafuji, D., Kotera, D., Aoki, T., Fujinami, S., Yamagishi, T.: Clickable di- and tetrafunctionalized pillar[n]arenes (n = 5, 6) by oxidation–reduction of pillar[n]arene units. J. Org. Chem. 77, 11146–11152 (2012)CrossRefGoogle Scholar
  41. 41.
    Holler, M., Allenbach, N., Sonet, J., Nierengarten, J.-F.: The high yielding synthesis of pillar[5]arenes under Friedel–Crafts conditions explained by dynamic covalent bond formation. Chem. Commun. 48, 2576–2578 (2012)CrossRefGoogle Scholar
  42. 42.
    Sonawane, M.P., Jacobs, J., Thomas, J., Meervelt, L.V., Dehaen, W.: Synthesis and structural exploration of disulfide bridged [2n] pillararene-like molecules. Chem. Commun. 49, 6310–6312 (2013)CrossRefGoogle Scholar
  43. 43.
    Kou, Y., Tao, H., Cao, D., Fu, Z., Schollmeyer, D., Meier, H.: Synthesis and conformational properties of nonsymmetric pillar[5]arenes and their acetonitrile inclusion compounds. Eur. J. Org. Chem. 33, 6464–6470 (2010)CrossRefGoogle Scholar
  44. 44.
    Kou, Y., Cao, D., Tao, H., Wang, L., Liang, J., Chen, Z., Meier, H.: Synthesis and inclusion properties of pillar[n]arenes. J. Incl. Phenom. Macrocycl. Chem. 77, 279–289 (2013)CrossRefGoogle Scholar
  45. 45.
    Liu, L., Cao, D., Jin, Y., Tao, H., Kou, Y., Meier, H.: Efficient synthesis of copillar[5]arenes and their host–guest properties with dibromoalkanes. Org. Biomol. Chem. 9, 7007–7010 (2011)CrossRefGoogle Scholar
  46. 46.
    Strutt, N.L., Schneebeli, S.T., Stoddart, J.F.: Stereochemical inversion in difunctionalised pillar[5]arenes. Supramol. Chem. 25, 596–608 (2013)CrossRefGoogle Scholar
  47. 47.
    Boinski, T., Szumna, A.: A facile, moisture-insensitive method for synthesis of pillar[5]arenes—the solvent templation by halogen bonds. Tetrahedron 68, 9419–9422 (2012)CrossRefGoogle Scholar
  48. 48.
    Ogoshi, T., Umeda, K., Yamagishi, T., Nakamoto, Y.: Through-space π-delocalized pillar[5]arene. Chem. Commun. 32, 4874–4876 (2009)CrossRefGoogle Scholar
  49. 49.
    Ogoshi, T., Shiga, R., Hashizume, M., Yamagishi, T.: “Clickable” pillar[5]arenes. Chem. Commun. 47, 6927–6929 (2011)CrossRefGoogle Scholar
  50. 50.
    Song, N., Chen, D.-X., Qiu, Y.-C., Yang, X.-Y., Xu, B., Tian, W., Yang, Y.-W.: Stimuli-responsive blue fluorescent supramolecular polymers based on a pillar[5]arene tetramer. Chem. Commun. 50, 8231–8234 (2014)CrossRefGoogle Scholar
  51. 51.
    Li, H., Chen, D.-X., Sun, Y.-L., Zheng, Y.B., Tan, L.-L., Weiss, P.S., Yang, Y.-W.: Viologen-mediated assembly of and sensing with carboxylatopillar[5]arene-modified Au nanoparticles. J. Am. Chem. Soc. 135, 1570–1576 (2013)CrossRefGoogle Scholar
  52. 52.
    Chen, D.-X., Sun, Y.-L., Zhang, Y., Cui, J.-Y., Shen, F.-Z., Yang, Y.-W.: Supramolecular self-assembly and photophysical properties of pillar[5]arene-stabilized CdTe quantum dots mediated by viologens. RSC Adv. 3, 5765–5768 (2013)CrossRefGoogle Scholar
  53. 53.
    Yao, Y., Zhou, Y., Dai, J., Yue, S., Xue, M.: Host–guest recognition-induced color change of water-soluble pillar[5]arene modified silver nanoparticles for visual detection of spermine analogues. Chem. Commun. 50, 869–871 (2014)CrossRefGoogle Scholar
  54. 54.
    Sun, Y.-L., Yang, Y.-W., Chen, D.-X., Wang, G., Zhou, Y., Wang, C.-Y., Stoddart, J.F.: Mechanized silica nanoparticles based on pillar[5]arenes for on-command cargo release. Small 9, 3224–3229 (2013)Google Scholar
  55. 55.
    Yao, Y., Xue, M., Chi, X., Ma, Y., He, J., Abliz, Z., Huang, F.: A new water-soluble pillar[5]arene: synthesis and application in the preparation of gold nanoparticles. Chem. Commun. 48, 6505–6507 (2012)CrossRefGoogle Scholar
  56. 56.
    Wang, K., Tan, L.-L., Chen, D.-X., Song, N., Xi, G., Zhang, S.X.-A., Li, C., Yang, Y.-W.: One-pot synthesis of pillar[n]arenes catalyzed by a minimum amount of TfOH and a solution-phase mechanistic study. Org. Biomol. Chem. 10, 9405–9409 (2012)CrossRefGoogle Scholar
  57. 57.
    Peerannawar, S.R., Gejji, S.P.: Theoretical investigations on vibrational spectra of pillar[5]arene–bis(pyridinium) complexes. Spectrochim. Acta A 104, 368–376 (2013)CrossRefGoogle Scholar
  58. 58.
    Peerannawar, S.R., Gejji, S.P.: Molecular interactions between pillar[5]arene and bis(pyridinium) derivatives. Comput. Theor. Chem. 999, 169–178 (2012)CrossRefGoogle Scholar
  59. 59.
    Li, C., Xu, Q., Li, J., Yao, F., Jia, X.: Complex interactions of pillar[5]arene with paraquats and bis(pyridinium) derivatives. Org. Biomol. Chem. 8, 1568–1576 (2010)CrossRefGoogle Scholar
  60. 60.
    Yu, G., Zhang, Z., He, J., Abliz, Z., Huang, F.: Cavity-extended pillar[5]arenes: syntheses and host–guest complexation with paraquat and bispyridinium derivatives. Eur. J. Org. Chem. 2012(30), 5902–5907 (2012)CrossRefGoogle Scholar
  61. 61.
    Chi, X., Xue, M., Yao, Y., Huang, F.: Redox-responsive complexation between a pillar[5]arene with mono(ethylene oxide) substituents and paraquat. Org. Lett. 15, 4722–4725 (2013)CrossRefGoogle Scholar
  62. 62.
    Chi, X., Xue, M.: Inclusion [2]complexes based on a pillar[5]arene with mono(ethylene oxide) substituents and vinylogous viologens. RSC Adv. 4, 365–368 (2014)CrossRefGoogle Scholar
  63. 63.
    Li, C., Zhao, L., Li, J., Ding, X., Chen, S., Zhang, Q., Yu, Y., Jia, X.: Self-assembly of [2]pseudorotaxanes based on pillar[5]arene and bis(imidazolium) cations. Chem. Commun. 46, 9016–9018 (2010)CrossRefGoogle Scholar
  64. 64.
    Pan, M., Xue, M.: Selective preparation of isomeric tetrahydroxypillar[5]arenes and pillar[3]arene[2]quinones. Eur. J. Org. Chem. 2013(22), 4787–4793 (2013)CrossRefGoogle Scholar
  65. 65.
    Pan, M., Xue, M.: Synthesis of a pillar[5]arene with both hydroxyl and methoxycarbonyl-methoxy groups and its host–guest complexation with a bis(imidazolium) salt. Chin. J. Chem. 32, 128–132 (2014)CrossRefGoogle Scholar
  66. 66.
    Li, C., Chen, S., Li, J., Han, K., Xu, M., Hu, B., Yu, Y., Jia, X.: Novel neutral guest recognition and interpenetrated complex formation from pillar[5]arenes. Chem. Commun. 47, 11294–11296 (2011)CrossRefGoogle Scholar
  67. 67.
    Zhang, Z., Luo, Y., Xia, B., Han, C., Yu, Y., Chen, X., Huang, F.: Four constitutional isomers of BMpillar[5]arene: synthesis, crystal structures and complexation with n-octyltrimethyl ammonium hexafluorophosphate. Chem. Commun. 47, 2417–2419 (2011)CrossRefGoogle Scholar
  68. 68.
    Xia, B., He, J., Abliz, Z., Yu, Y., Huang, F.: Synthesis of a pillar[5]arene dimer by co-oligomerization and its complexation with n-octyltrimethyl ammonium hexafluorophosphate. Tetrahedron Lett. 52, 4433–4436 (2011)CrossRefGoogle Scholar
  69. 69.
    Ni, M., Guan, Y., Wu, L., Deng, C., Hu, X., Jiang, J., Lin, C., Wang, L.: Improved recognition of alkylammonium salts by ion pair recognition based on a novel heteroditopic pillar[5]arene receptor. Tetrahedron Lett. 53, 6409–6413 (2012)CrossRefGoogle Scholar
  70. 70.
    Gao, L., Dong, S., Zheng, B., Huang, F.: Synthesis of a pillar[5]arene-based heteroditopic host and its complexation with n-octyltriethylammonium salts. Eur. J. Org. Chem. 2013(7), 1209–1213 (2013)CrossRefGoogle Scholar
  71. 71.
    Han, C., Yu, G., Zheng, B., Huang, F.: Complexation between pillar[5]arenes and a secondary ammonium salt. Org. Lett. 14, 1712–1715 (2012)CrossRefGoogle Scholar
  72. 72.
    Liu, L., Chen, Y., Wang, L., Meier, H., Cao, D.: Complexation selectivities of pillar[5]arenes with primary ammonium salts. Chin. J. Chem. 31, 624–626 (2013)CrossRefGoogle Scholar
  73. 73.
    Han, C., Zhang, Z., Yu, G., Huang, F.: Syntheses of a pillar[4]arene[1]quinone and a difunctionalized pillar[5]arene by partial oxidation. Chem. Commun. 48, 9876–9878 (2012)CrossRefGoogle Scholar
  74. 74.
    Strutt, N.L., Forgan, R.S., Spruell, J.M., Botros, Y.Y., Stoddart, J.F.: Monofunctionalized pillar[5]arene as a host for alkanediamines. J. Am. Chem. Soc. 133, 5668–5671 (2011)CrossRefGoogle Scholar
  75. 75.
    Deng, H., Shu, X., Hu, X., Li, J., Jia, X., Li, C.: Synthesis of a fully functionalized pillar[5]arene by ‘click chemistry’ and its effective binding toward neutral alkanediamines. Tetrahedron Lett. 53, 4609–4612 (2012)CrossRefGoogle Scholar
  76. 76.
    Yu, G., Hua, B., Han, C.: Proton transfer in host–guest complexation between a difunctional pillar[5]arene and alkyldiamines. Org. Lett. 16, 2486–2489 (2014)CrossRefGoogle Scholar
  77. 77.
    Shu, X., Fan, J., Li, J., Wang, X., Chen, W., Jia, X., Li, C.: Complexation of neutral 1,4-dihalobutanes with simple pillar[5]arenes that is dominated by dispersion forces. Org. Biomol. Chem. 10, 3393–3397 (2012)CrossRefGoogle Scholar
  78. 78.
    Han, K., Zhang, Y., Li, J., Yu, Y., Jia, X., Li, C.: Binding mechanisms and driving forces for the selective complexation between pillar[5]arenes and neutral nitrogen heterocyclic compounds. Eur. J. Org. Chem. 2013, 2057–2060 (2013)CrossRefGoogle Scholar
  79. 79.
    Shu, X., Chen, S., Li, J., Chen, Z., Weng, L., Jia, X., Li, C.: Highly effective binding of neutral dinitriles by simple pillar[5]arenes. Chem. Commun. 48, 2967–2969 (2012)CrossRefGoogle Scholar
  80. 80.
    Hu, X.-S., Deng, H.-M., Li, J., Jia, X.-S., Li, C.-J.: Selective binding of unsaturated aliphatic hydrocarbons by a pillar[5]arene. Chin. Chem. Lett. 24, 707–709 (2013)CrossRefGoogle Scholar
  81. 81.
    Shu, X., Chen, W., Hou, D., Meng, Q., Zheng, R., Li, C.: Novel binding regioselectivity in the interpenetration of a non-symmetric axle into a non-symmetric pillar[5]arene wheel. Chem. Commun. 50, 4820–4823 (2014)CrossRefGoogle Scholar
  82. 82.
    Li, C., Han, K., Li, J., Zhang, H., Ma, J., Shu, X., Chen, Z., Weng, L., Jia, X.: Synthesis of pillar[5]arene dimers and their cooperative binding toward some neutral guests. Org. Lett. 14, 42–45 (2012)CrossRefGoogle Scholar
  83. 83.
    Zhang, Z., Zhao, Q., Yuan, J., Antonietti, M., Huang, F.: A hybrid porous material from a pillar[5]arene and a poly(ionic liquid): selective adsorption of n-alkylene diols. Chem. Commun. 50, 2595–2597 (2014)CrossRefGoogle Scholar
  84. 84.
    Ogoshi, T., Ueshima, N., Yamagishi, T., Toyota, Y., Matsumi, N.: Ionic liquid pillar[5]arene: its ionic conductivity and solvent-free complexation with a guest. Chem. Commun. 48, 3536–3538 (2012)CrossRefGoogle Scholar
  85. 85.
    Tan, L.-L., Zhang, Y., Li, B., Wang, K., Zhang, S.X.-A., Tao, Y., Yang, Y.-W.: Selective recognition of “solvent” molecules in solution and the solid state by 1,4-dimethoxypillar[5]arene driven by attractive forces. N. J. Chem. 38, 845–851 (2014)CrossRefGoogle Scholar
  86. 86.
    Ma, Y., Ji, X., Xiang, F., Chi, X., Han, C., He, J., Abliz, Z., Che, W., Huang, F.: A cationic water-soluble pillar[5]arene: synthesis and host–guest complexation with sodium 1-octanesulfonate. Chem. Commun. 47, 12340–12342 (2011)CrossRefGoogle Scholar
  87. 87.
    Wei, P., Yan, X., Li, J., Ma, Y., Huang, F.: Two 2:3 copillar[5]arene constitutional isomers: syntheses, crystal structures and host–guest complexation of their derivatives with dicarboxylic acid sodium salts in water. Chem. Commun. 49, 1070–1072 (2013)CrossRefGoogle Scholar
  88. 88.
    Ma, Y., Xue, M., Zhang, Z., Chi, X., Huang, F.: Neutral guest capture by a cationic water-soluble pillar[5]arene in water. Tetrahedron 69, 4532–4535 (2013)CrossRefGoogle Scholar
  89. 89.
    Hu, X.-B., Chen, L., Si, W., Yu, Y., Hou, J.-L.: Pillar[5]arene decaamine: synthesis, encapsulation of very long linear diacids and formation of ion pair-stopped [2]rotaxanes. Chem. Commun. 47, 4694–4696 (2011)CrossRefGoogle Scholar
  90. 90.
    Ogoshi, T., Hashizume, M., Yamagishi, T., Nakamoto, Y.: Synthesis, conformational and host–guest properties of water-soluble pillar[5]arene. Chem. Commun. 46, 3708–3710 (2010)CrossRefGoogle Scholar
  91. 91.
    Li, C., Shu, X., Li, J., Chen, S., Han, K., Xu, M., Hu, B., Yu, Y., Jia, X.: Complexation of 1,4-bis(pyridinium)butanes by negatively charged carboxylatopillar[5]arene. J. Org. Chem. 76, 8458–8465 (2011)CrossRefGoogle Scholar
  92. 92.
    Li, C., Ma, J., Zhao, L., Zhang, Y., Yu, Y., Shu, X., Li, J., Jia, X.: Molecular selective binding of basic amino acids by a water-soluble pillar[5]arene. Chem. Commun. 49, 1924–1926 (2013)CrossRefGoogle Scholar
  93. 93.
    Zheng, D.-D., Fu, D.-Y., Wu, Y.-Q., Sun, Y.-L., Tan, L.-L., Zhou, T., Ma, S.-Q., Zha, X., Yang, Y.-W.: Efficient inhibition of human papillomavirus 16 L1 pentamer formation by a carboxylatopillarene and a p-sulfonatocalixarene. Chem. Commun. 50, 3201–3203 (2014)CrossRefGoogle Scholar
  94. 94.
    Yu, G., Zhang, Z., Han, C., Xue, M., Zhou, Q., Huang, F.: A non-symmetric pillar[5]arene-based selective anion receptor for fluoride. Chem. Commun. 48, 2958–2960 (2012)CrossRefGoogle Scholar
  95. 95.
    Sun, S., Hu, X.-Y., Chen, D., Shi, J., Dong, Y., Lin, C., Pan, Y., Wang, L.: Pillar[5]arene-based side-chain polypseudorotaxanes as an anion-responsive fluorescent sensor. Polym. Chem. 4, 2224–2229 (2013)CrossRefGoogle Scholar
  96. 96.
    Sun, S., Shi, J.-B., Dong, Y.-P., Lin, C., Hu, X.-Y., Wang, L.-Y.: A pillar[5]arene-based side-chain pseudorotaxanes and polypseudorotaxanes as novel fluorescent sensors for the selective detection of halogen ions. Chin. Chem. Lett. 24, 987–992 (2013)CrossRefGoogle Scholar
  97. 97.
    Wang, P., Yao, Y., Xue, M.: A novel fluorescent probe for detecting paraquat and cyanide in water based on pillar[5]arene/10-methylacridinium iodide molecular recognition. Chem. Commun. 50, 5064–5067 (2014)CrossRefGoogle Scholar
  98. 98.
    Zhou, S.-Y., Song, N., Liu, X.-S., Chen, D.-X., Jia, Q., Yang, Y.-W.: Separation and preconcentration of gold and palladium ions with a carboxylated pillar[5]arene derived sorbent prior to their determination by flow injection FAAS. Microchim. Acta (2014). doi: 10.1007/s00604-014-1229-2 Google Scholar
  99. 99.
    Fang, Y., Wu, L., Liao, J., Chen, L., Yang, Y., Liu, N., He, L., Zou, S., Feng, W., Yuan, L.: Pillar[5]arene-based phosphine oxides: novel ionophores for solvent extraction separation of f-block elements from acidic media. RSC Adv. 3, 12376–12383 (2013)CrossRefGoogle Scholar
  100. 100.
    Jia, Y., Fang, Y., Li, Y., He, L., Fan, W., Feng, W., Yang, Y., Liao, J., Liu, N., Yuan, L.: Pillar[5]arenes bearing phosphine oxide pendents as Hg2+ selective receptors. Talanta 125, 322–328 (2014)CrossRefGoogle Scholar
  101. 101.
    Wu, L., Fang, Y., Jia, Y., Yang, Y., Liao, J., Liu, N., Yang, X., Feng, W., Ming, J., Yuan, L.: Pillar[5]arene-based diglycolamides for highly efficient separation of americium(III) and europium(III). Dalton Trans. 43, 3835–3838 (2014)CrossRefGoogle Scholar
  102. 102.
    Ogoshi, T., Tanaka, S., Yamagishi, T., Nakamoto, Y.: Ionic liquid molecules (ILs) as novel guests for pillar[5]arene: 1:2 host–guest complexes between pillar[5]arene and ILs in organic media. Chem. Lett. 40, 96–98 (2011)CrossRefGoogle Scholar
  103. 103.
    Ogoshi, T., Shiga, R., Yamagishi, T.: Reversibly tunable lower critical solution temperature utilizing host–guest complexation of pillar[5]arene with triethylene oxide substituents. J. Am. Chem. Soc. 134, 4577–4580 (2012)CrossRefGoogle Scholar
  104. 104.
    Dong, S., Zheng, B., Yao, Y., Han, C., Yuan, J., Antonietti, M., Huang, F.: LCST-type phase behavior induced by pillar[5]arene/ionic liquid host–guest complexation. Adv. Mater. 25, 6864–6867 (2013)CrossRefGoogle Scholar
  105. 105.
    Adiri, T., Marciano, D., Cohen, Y.: Potential 129Xe-NMR biosensors based on secondary and tertiary complexes of a water-soluble pillar[5]arene derivative. Chem. Commun. 49, 7082–7084 (2013)CrossRefGoogle Scholar
  106. 106.
    Kothur, R.R., Hall, J., Patel, B.A., Leong, C.L., Boutelle, M.G., Cragg, P.J.: A low pH sensor from an esterified pillar[5]arene. Chem. Commun. 50, 852–854 (2014)CrossRefGoogle Scholar
  107. 107.
    Ogoshi, T., Kitajima, K., Aoki, T., Yamagishi, T., Nakamoto, Y.: Effect of an intramolecular hydrogen bond belt and complexation with the guest on the rotation behavior of phenolic units in pillar[5]arenes. J. Phys. Chem. Lett. 1, 817–821 (2010)CrossRefGoogle Scholar
  108. 108.
    Ogoshi, T., Shiga, R., Yamagishi, T., Nakamoto, Y.: Planar-chiral pillar[5]arene: chiral switches induced by multiexternal stimulus of temperature, solvents, and addition of achiral guest molecule. J. Org. Chem. 76, 618–622 (2011)CrossRefGoogle Scholar
  109. 109.
    Ogoshi, T., Kitajima, K., Aoki, T., Fujinami, S., Yamagishi, T., Nakamoto, Y.: Synthesis and conformational characteristics of alkyl-substituted pillar[5]arenes. J. Org. Chem. 75, 3268–3273 (2010)CrossRefGoogle Scholar
  110. 110.
    Ogoshi, T., Kitajima, K., Yamagishi, T., Nakamoto, Y.: Synthesis and conformational characteristics of nonsymmetric pillar[5]arene. Org. Lett. 12, 636–638 (2010)CrossRefGoogle Scholar
  111. 111.
    Ogoshi, T., Masaki, K., Shiga, R., Kitajima, K., Yamagishi, T.: Planar-chiral macrocyclic host pillar[5]arene: no rotation of units and isolation of enantiomers by introducing bulky substituents. Org. Lett. 13, 1264–1266 (2011)CrossRefGoogle Scholar
  112. 112.
    Ogoshi, T., Yamafuji, D., Akutsu, T., Naitob, M., Yamagishi, T.: Achiral guest-induced chiroptical changes of a planar-chiral pillar[5]arene containing one π-conjugated unit. Chem. Commun. 49, 8782–8784 (2013)CrossRefGoogle Scholar
  113. 113.
    Ogoshi, T., Akutsu, T., Yamafuji, D., Aoki, T., Yamagishi, T.: Solvent- and achiral-guest-triggered chiral inversion in a planar chiral pseudo[1]catenane. Angew. Chem. Int. Ed. 52, 8111–8115 (2013)CrossRefGoogle Scholar
  114. 114.
    Ogoshi, T., Demachi, K., Kitajima, K., Yamagishi, T.: Selective complexation of n-alkanes with pillar[5]arene dimers in organic media. Chem. Commun. 47, 10290–10292 (2011)CrossRefGoogle Scholar
  115. 115.
    Lao, K.-U., Yu, C.-H.: A computational study of unique properties of pillar[n]quinones: self-assembly to tubular structures and potential applications as electron acceptors and anion recognizers. J. Comput. Chem. 32, 2716–2726 (2011)CrossRefGoogle Scholar
  116. 116.
    Han, C., Ma, F., Zhang, Z., Xia, B., Yu, Y., Huang, F.: DIBPillar[n]arenes (n = 5, 6): syntheses, X-ray crystal structures, and complexation with n-octyltriethyl ammonium hexafluorophosphate. Org. Lett. 12, 4360–4363 (2010)CrossRefGoogle Scholar
  117. 117.
    Peerannawar, S.R., Gejji, S.P.: Electronic structure, molecular electrostatic potential and spectral characteristics of pillar[6]arene hosts and their complexes with n-octyltriethylammonium ions. Phys. Chem. Chem. Phys. 14, 8711–8722 (2012)CrossRefGoogle Scholar
  118. 118.
    Han, C., Gao, L., Yu, G., Zhang, Z., Dong, S., Huang, F.: Synthesis of a difunctionalized pillar[6]arene and its complexation with an ammonium salt coupled to a weakly coordinating counteranion. Eur. J. Org. Chem. 2013, 2529–2532 (2013)CrossRefGoogle Scholar
  119. 119.
    Li, C., Shu, X., Li, J., Fan, J., Chen, Z., Weng, L., Jia, X.: Selective and effective binding of pillar[5, 6]arenes toward secondary ammonium salts with a weakly coordinating counteranion. Org. Lett. 14, 4126–4129 (2012)CrossRefGoogle Scholar
  120. 120.
    Ma, Y., Chi, X., Yan, X., Liu, J., Yao, Y., Chen, W., Huang, F., Hou, J.-L.: Per-hydroxylated pillar[6]arene: synthesis, X-ray crystal structure, and host–guest complexation. Org. Lett. 14, 1532–1535 (2012)CrossRefGoogle Scholar
  121. 121.
    Chi, X., Xue, M., Ma, Y., Yan, X., Huang, F.: A pillar[6]arene with mono(ethylene oxide) substituents: synthesis and complexation with diquat. Chem. Commun. 49, 8175–8177 (2013)CrossRefGoogle Scholar
  122. 122.
    Chen, W., Zhang, Y., Li, J., Lou, X., Yu, Y., Jia, X., Li, C.: Synthesis of a cationic water-soluble pillar[6]arene and its effective complexation towards naphthalenesulfonate guests. Chem. Commun. 49, 7956–7958 (2013)CrossRefGoogle Scholar
  123. 123.
    Fan, J., Deng, H., Li, J., Jia, X., Li, C.: Charge–transfer inclusion complex formation of tropylium cation with pillar[6]arenes. Chem. Commun. 49, 6343–6345 (2013)CrossRefGoogle Scholar
  124. 124.
    Xia, W., Hu, X.-Y., Chen, Y., Lin, C., Wang, L.: A novel redox-responsive pillar[6]arene-based inclusion complex with a ferrocenium guest. Chem. Commun. 49, 5085–5087 (2013)CrossRefGoogle Scholar
  125. 125.
    Ogoshi, T., Kida, K., Yamagishi, T.: Photoreversible switching of the lower critical solution temperature in a photoresponsive host–guest system of pillar[6]arene with triethylene oxide substituents and an azobenzene derivative. J. Am. Chem. Soc. 134, 20146–20150 (2012)CrossRefGoogle Scholar
  126. 126.
    Han, C., Zhang, Z., Chi, X., Zhang, M., Yu, G., Huang, F.: Synthesis of 1,4-bis(n-propoxy)pillar[7]arene and its host–guest chemistry. Acta Chim. Sin. 70, 1775–1778 (2012)CrossRefGoogle Scholar
  127. 127.
    Fan, J., Chen, Y., Cao, D., Yang, Y.-W., Jia, X., Li, C.: Host–guest properties of pillar[7]arene towards substituted adamantane ammonium cations. RSC Adv. 4, 4330–4333 (2014)CrossRefGoogle Scholar
  128. 128.
    Hu, X.-B., Chen, Z., Chen, L., Zhang, L., Hou, J.-L., Li, Z.-T.: Pillar[n]arenes (n = 8–10) with two cavities: synthesis, structures and complexing properties. Chem. Commun. 48, 10999–11001 (2012)CrossRefGoogle Scholar
  129. 129.
    Li, Z., Yang, J., Yu, G., He, J., Abliz, Z., Huang, F.: Synthesis of a water-soluble pillar[9]arene and its pH-responsive binding to paraquat. Chem. Commun. 50, 2841–2843 (2014)CrossRefGoogle Scholar
  130. 130.
    Ogoshi, T., Ueshima, N., Sakakibara, F., Yamagishi, T., Haino, T.: Conversion from pillar[5]arene to pillar[6–15]arenes by ring expansion and encapsulation of C60 by pillar[n]arenes with nanosize cavities. Org. Lett. 16, 2896–2899 (2014)CrossRefGoogle Scholar
  131. 131.
    Ogoshi, T., Demachi, K., Kitajima, K., Yamagishi, T.: Monofunctionalized pillar[5]arenes: synthesis and supramolecular structure. Chem. Commun. 47, 7164–7166 (2011)CrossRefGoogle Scholar
  132. 132.
    Chen, Y., Cao, D., Wang, L., He, M., Zhou, L., Schollmeyer, D., Meier, H.: Monoester copillar[5]arenes: synthesis, unusual self-inclusion behavior, and molecular recognition. Chem. Eur. J. 19, 7064–7070 (2013)CrossRefGoogle Scholar
  133. 133.
    Chen, L., Li, Z., Chen, Z., Hou, J.-L.: Pillar[5]arenes with an introverted amino group: a hydrogen bonding tuning effect. Org. Biomol. Chem. 11, 248–251 (2013)CrossRefGoogle Scholar
  134. 134.
    Xia, B., Xue, M.: Design and efficient synthesis of a pillar[5]arene-based [1]rotaxane. Chem. Commun. 50, 1021–1023 (2014)CrossRefGoogle Scholar
  135. 135.
    Guan, Y., Liu, P., Deng, C., Ni, M., Xiong, S., Lin, C., Hu, X.-Y., Ma, J., Wang, L.: Dynamic self-inclusion behavior of pillar[5]arene-based pseudo[1]rotaxanes. Org. Biomol. Chem. 12, 1079–1089 (2014)CrossRefGoogle Scholar
  136. 136.
    Ni, M., Hu, X.-Y., Jiang, J., Wang, L.: The self-complexation of mono-urea-functionalized pillar[5]arenes with abnormal urea behaviors. Chem. Commun. 50, 1317–1319 (2014)CrossRefGoogle Scholar
  137. 137.
    Manoni, R., Neviani, P., Franchi, P., Mezzina, E., Lucarini, M.: Spin-labelled pillar[5]arene as paramagnetic host for supramolecular assemblies. Eur. J. Org. Chem. 2014(1), 147–151 (2014)CrossRefGoogle Scholar
  138. 138.
    Wei, P., Yan, X., Li, J., Ma, Y., Yao, Y., Huang, F.: Novel [2]rotaxanes based on the recognition of pillar[5]arenes to an alkane functionalized with triazole moieties. Tetrahedron 68, 9179–9185 (2012)CrossRefGoogle Scholar
  139. 139.
    Dong, S., Han, C., Zheng, B., Zhang, M., Huang, F.: Preparation of two new [2]rotaxanes based on the pillar[5]arene/alkane recognition motif. Tetrahedron Lett. 53, 3668–3671 (2012)CrossRefGoogle Scholar
  140. 140.
    Ogoshi, T., Aoki, T., Shiga, R., Iizuka, R., Ueda, S., Demachi, K., Yamafuji, D., Kayama, H., Yamagishi, T.: Cyclic host liquids for facile and high-yield synthesis of [2]rotaxanes. J. Am. Chem. Soc. 134, 20322–20325 (2012)CrossRefGoogle Scholar
  141. 141.
    Duan, Q., Xia, W., Hu, X., Ni, M., Jiang, J., Lin, C., Pan, Y., Wang, L.: Novel [2]pseudorotaxanes constructed by self-assembly of bis-urea-functionalized pillar[5]arene and linear alkyl dicarboxylates. Chem. Commun. 48, 8532–8534 (2012)CrossRefGoogle Scholar
  142. 142.
    Ogoshi, T., Yamafuji, D., Aoki, T., Yamagishi, T.: Photoreversible transformation between seconds and hours time-scales: threading of pillar[5]arene onto the azobenzene-end of a viologen derivative. J. Org. Chem. 76, 9497–9503 (2011)CrossRefGoogle Scholar
  143. 143.
    Ogoshi, T., Yamafuji, D., Aoki, T., Yamagishi, T.: Thermally responsive shuttling behavior of a pillar[6]arene-based [2]rotaxane. Chem. Commun. 48, 6842–6844 (2012)CrossRefGoogle Scholar
  144. 144.
    Dong, S., Yuan, J., Huang, F.: A pillar[5]arene/imidazolium [2]rotaxane: solvent and thermo-driven molecular motions and supramolecular gel formation. Chem. Sci. 5, 247–252 (2014)CrossRefGoogle Scholar
  145. 145.
    Ogoshi, T., Yamafuji, D., Aoki, T., Kitajima, K., Yamagishi, T., Hayashi, Y., Kawauchi, S.: High-yield diastereoselective synthesis of planar chiral [2]- and [3]rotaxanes constructed from per-ethylated pillar[5]arene and pyridinium derivatives. Chem. Eur. J. 18, 7493–7500 (2012)CrossRefGoogle Scholar
  146. 146.
    Gao, L., Han, C., Zheng, B., Dong, S., Huang, F.: Formation of a pillar[5]arene-based [3]pseudorotaxane in solution and in the solid state. Chem. Commun. 49, 472–474 (2013)CrossRefGoogle Scholar
  147. 147.
    Zhang, Z., Han, C., Yu, G., Huang, F.: A solvent-driven molecular spring. Chem. Sci. 3, 3026–3031 (2012)CrossRefGoogle Scholar
  148. 148.
    Ke, C., Strutt, N.L., Li, H., Hou, X., Hartlieb, K.J., McGonigal, P.R., Ma, Z., Iehl, J., Stern, C.L., Cheng, C., Zhu, Z., Vermeulen, N.A., Meade, T.J., Botros, Y.Y., Stoddart, J.F.: Pillar[5]arene as a co-factor in templating rotaxane formation. J. Am. Chem. Soc. 135, 17019–17030 (2013)CrossRefGoogle Scholar
  149. 149.
    Hou, X., Ke, C., Cheng, C., Song, N., Blackburn, A.K., Sarjeant, A.A., Botros, Y.Y., Yang, Y.-W., Stoddart, J.F.: Efficient syntheses of pillar[6]arene-based hetero[4]rotaxanes using a cooperative capture strategy. Chem. Commun. 50, 6196–6199 (2014)CrossRefGoogle Scholar
  150. 150.
    Ogoshi, T., Nishida, Y., Yamagishi, T., Nakamoto, Y.: Polypseudorotaxane constructed from pillar[5]arene and viologen polymer. Macromolecules 43, 3145–3147 (2010)CrossRefGoogle Scholar
  151. 151.
    Ogoshi, T., Nishida, Y., Yamagishi, T., Nakamoto, Y.: High yield synthesis of polyrotaxane constructed from pillar[5]arene and viologen polymer and stabilization of its radical cation. Macromolecules 43, 7068–7072 (2010)CrossRefGoogle Scholar
  152. 152.
    Ogoshi, T., Hasegawa, Y., Aoki, T., Ishimori, Y., Inagi, S., Yamagishi, T.: Reduction of emeraldine base form of polyaniline by pillar[5]arene based on formation of poly(pseudorotaxane) structure. Macromolecules 44, 7639–7644 (2011)CrossRefGoogle Scholar
  153. 153.
    Ogoshi, T., Aoki, T., Ueda, S., Tamura, Y., Yamagishi, T.: Pillar[5]arene-based nonionic polyrotaxanes and a topological gel prepared from cyclic host liquids. Chem. Commun. 50, 6607–6609 (2014)CrossRefGoogle Scholar
  154. 154.
    Kitajima, K., Ogoshi, T., Yamagishi, T.: Diastereoselective synthesis of a [2]catenane from a pillar[5]arene and a pyridinium derivative. Chem. Commun. 50, 2925–2927 (2014)CrossRefGoogle Scholar
  155. 155.
    Zhang, Z., Luo, Y., Chen, J., Dong, S., Yu, Y., Ma, Z., Huang, F.: Formation of linear supramolecular polymers that is driven by C–H···π interactions in solution and in the solid state. Angew. Chem. Int. Ed. 50, 1397–1401 (2011)CrossRefGoogle Scholar
  156. 156.
    Zhang, Z., Yu, G., Han, C., Liu, J., Ding, X., Yu, Y., Huang, F.: Formation of a cyclic dimer containing two mirror image monomers in the solid state controlled by van der Waals Forces. Org. Lett. 13, 4818–4821 (2011)CrossRefGoogle Scholar
  157. 157.
    Ogoshi, T., Kayama, H., Yamafuji, D., Aoki, T., Yamagishi, T.: Supramolecular polymers with alternating pillar[5]arene and pillar[6]arene units from a highly selective multiple host–guest complexation system and monofunctionalized pillar[6]arene. Chem. Sci. 3, 3221–3226 (2012)CrossRefGoogle Scholar
  158. 158.
    Wang, X., Han, K., Li, J., Jia, X., Li, C.: Pillar[5]arene–neutral guest recognition based supramolecular alternating copolymer containing [c2]daisy chain and bis-pillar[5]arene units. Polym. Chem. 4, 3998–4003 (2013)CrossRefGoogle Scholar
  159. 159.
    Guan, Y., Ni, M., Hu, X., Xiao, T., Xiong, S., Lin, C., Wang, L.: Pillar[5]arene-based polymeric architectures constructed by orthogonal supramolecular interactions. Chem. Commun. 48, 8529–8531 (2012)CrossRefGoogle Scholar
  160. 160.
    Hu, X.-Y., Zhang, P., Wu, X., Xia, W., Xiao, T., Jiang, J., Lin, C., Wang, L.: Pillar[5]arene-based supramolecular polypseudorotaxanes constructed from quadruple hydrogen bonding. Polym. Chem. 3, 3060–3063 (2012)CrossRefGoogle Scholar
  161. 161.
    Hu, X.-Y., Wu, X., Duan, Q., Xiao, T., Lin, C., Wang, L.: Novel pillar[5]arene-based dynamic polyrotaxanes interlocked by the quadruple hydrogen bonding ureidopyrimidinone motif. Org. Lett. 14, 4826–4829 (2012)CrossRefGoogle Scholar
  162. 162.
    Hu, X.-Y., Wu, X., Wang, S., Chen, D., Xia, W., Lin, C., Pan, Y., Wang, L.: Pillar[5]arene-based supramolecular polypseudorotaxane polymer networks constructed by orthogonal self-assembly. Polym. Chem. 4, 4292–4297 (2013)CrossRefGoogle Scholar
  163. 163.
    Ogoshi, T., Yoshikoshi, K., Aoki, T., Yamagishi, T.: Photoreversible switching between assembly and disassembly of a supramolecular polymer involving an azobenzene-bridged pillar[5]arene dimer. Chem. Commun. 49, 8785–8787 (2013)CrossRefGoogle Scholar
  164. 164.
    Xia, B., Zheng, B., Han, C., Dong, S., Zhang, M., Hu, B., Yu, Y., Huang, F.: A novel pH-responsive supramolecular polymer constructed by pillar[5]arene-based host–guest interactions. Polym. Chem. 4, 2019–2024 (2013)CrossRefGoogle Scholar
  165. 165.
    Han, C., Xia, B., Chen, J., Yu, G., Zhang, Z., Dong, S., Hu, B., Yu, Y., Xue, M.: A pillar[5]arene-based anion responsive supramolecular polymer. RSC Adv. 3, 16089–16094 (2013)CrossRefGoogle Scholar
  166. 166.
    Wang, Y., Xu, J.-F., Chen, Y.-Z., Niu, L.-Y., Wu, L.-Z., Tung, C.-H., Yang, Q.-Z.: Photoresponsive supramolecular self-assembly of monofunctionalized pillar[5]arene based on stiff stilbene. Chem. Commun. 50, 7001–7003 (2014)CrossRefGoogle Scholar
  167. 167.
    Wang, K., Wang, C.-Y., Wang, Y., Li, H., Bao, C.-Y., Liu, J.-Y., Zhang, S.X.-A., Yang, Y.-W.: Electrospun nanofibers and multi-responsive supramolecular assemblies constructed from a pillar[5]arene-based receptor. Chem. Commun. 49, 10528–10530 (2013)CrossRefGoogle Scholar
  168. 168.
    Li, C., Han, K., Li, J., Zhang, Y., Chen, W., Yu, Y., Jia, X.: Supramolecular polymers based on efficient pillar[5]arene-neutral guest motifs. Chem. Eur. J. 19, 11892–11897 (2013)CrossRefGoogle Scholar
  169. 169.
    Wang, X., Deng, H., Li, J., Zheng, K., Jia, X., Li, C.: A neutral supramolecular hyperbranched polymer fabricated from an AB2-type copillar[5]arene. Macromol. Rapid Commun. 34, 1856–1862 (2013)CrossRefGoogle Scholar
  170. 170.
    Strutt, N.L., Zhang, H., Giesener, M.A., Lei, J., Stoddart, J.F.: A self-complexing and self-assembling pillar[5]arene. Chem. Commun. 48, 1647–1649 (2012)CrossRefGoogle Scholar
  171. 171.
    Xu, J.-F., Chen, Y.-Z., Wu, L.-Z., Tung, C.-H., Yang, Q.-Z.: Dynamic covalent bond based on reversible photo [4 + 4] cycloaddition of anthracene for construction of double-dynamic polymers. Org. Lett. 15, 6148–6151 (2013)CrossRefGoogle Scholar
  172. 172.
    Zhang, Y.M., Shi, B.B., Li, H., Qu, W.J., Gao, G.Y., Lin, Q., Yao, H., Wei, T.B.: Copillar[5]arene-based supramolecular polymer gels. Polym. Chem. 5, 4722–4725 (2014)CrossRefGoogle Scholar
  173. 173.
    Strutt, N.L., Fairen-Jimenez, D., Iehl, J., Lalonde, M.B., Snurr, R.Q., Farha, O.K., Hupp, J.T., Stoddart, J.F.: Incorporation of an A1/A2-difunctionalized pillar[5]arene into a metal–organic framework. J. Am. Chem. Soc. 134, 17436–17439 (2012)CrossRefGoogle Scholar
  174. 174.
    Strutt, N.L., Zhang, H., Stoddart, J.F.: Enantiopure pillar[5]arene active domains within a homochiral metal–organic framework. Chem. Commun. 50, 7455–7458 (2014)CrossRefGoogle Scholar
  175. 175.
    Li, Z.-Y., Zhang, Y., Zhang, C.-W., Chen, L.-J., Wang, C., Tan, H., Yu, Y., Li, X., Yang, H.-B.: Cross-linked supramolecular polymer gels constructed from discrete multi-pillar[5]arene metallacycles and their multiple stimuli-responsive behavior. J. Am. Chem. Soc. 136, 8577–8589 (2014)CrossRefGoogle Scholar
  176. 176.
    Zhang, H., Strutt, N.L., Stoll, R.S., Li, H., Zhu, Z., Stoddart, J.F.: Dynamic clicked surfaces based on functionalised pillar[5]arene. Chem. Commun. 47, 11420–11422 (2011)CrossRefGoogle Scholar
  177. 177.
    Yu, G., Han, C., Zhang, Z., Chen, J., Yan, X., Zheng, B., Liu, S., Huang, F.: Pillar[6]arene-based photoresponsive host–guest complexation. J. Am. Chem. Soc. 134, 8711–8717 (2012)CrossRefGoogle Scholar
  178. 178.
    Xia, D., Yu, G., Li, J., Huang, F.: Photo-responsive self-assembly based on a water-soluble pillar[6]arene and an azobenzene-containing amphiphile in water. Chem. Commun. 50, 3606–3608 (2014)CrossRefGoogle Scholar
  179. 179.
    Yu, G., Zhou, X., Zhang, Z., Han, C., Mao, Z., Gao, C., Huang, F.: Pillar[6]arene/paraquat molecular recognition in water: high binding strength, pH-responsiveness, and application in controllable self-assembly, controlled release, and treatment of paraquat poisoning. J. Am. Chem. Soc. 134, 19489–19497 (2012)CrossRefGoogle Scholar
  180. 180.
    Zhang, H., Ma, X., Guo, J., Nguyen, K.T., Zhang, Q., Wang, X.-J., Yan, H., Zhu, L., Zhao, Y.: Thermo-responsive fluorescent vesicles assembled by fluorescein-functionalized pillar[5]arene. RSC Adv. 3, 368–371 (2013)CrossRefGoogle Scholar
  181. 181.
    Zhang, H., Nguyen, K.T., Ma, X., Yan, H., Guo, J., Zhu, L., Zhao, Y.: Host–guest complexation driven dynamic supramolecular self-assembly. Org. Biomol. Chem. 11, 2070–2074 (2013)CrossRefGoogle Scholar
  182. 182.
    Li, Z., Yang, J., Yu, G., He, J., Abliz, Z., Huang, F.: Water-soluble pillar[7]arene: synthesis, pH-controlled complexation with paraquat, and application in constructing supramolecular vesicles. Org. Lett. 16, 2066–2069 (2014)CrossRefGoogle Scholar
  183. 183.
    Yao, Y., Wei, P., Yue, S., Li, J., Xue, M.: Amphiphilic pillar[5]arenes: influence of chemical structure on self-assembly morphology and application in gas response and λ-DNA condensation. RSC Adv. 4, 6042–6047 (2014)CrossRefGoogle Scholar
  184. 184.
    Jie, K., Yao, Y., Chi, X., Huang, F.: A CO2-responsive pillar[5]arene: synthesis and self-assembly in water. Chem. Commun. 50, 5503–5505 (2014)CrossRefGoogle Scholar
  185. 185.
    Wang, P., Yan, X., Huang, F.: Host–guest complexation induced emission: a pillar[6]arene-based complex with intense fluorescence in dilute solution. Chem. Commun. 50, 5017–5019 (2014)CrossRefGoogle Scholar
  186. 186.
    Duan, Q., Cao, Y., Li, Y., Hu, X., Xiao, T., Lin, C., Pan, Y., Wang, L.: pH-responsive supramolecular vesicles based on water-soluble pillar[6]arene and ferrocene derivative for drug delivery. J. Am. Chem. Soc. 135, 10542–10549 (2013)CrossRefGoogle Scholar
  187. 187.
    Zhang, H., Ma, X., Nguyen, K.T., Zhao, Y.: Biocompatible pillararene-assembly-based carriers for dual bioimaging. ACS Nano 7, 7853–7863 (2013)CrossRefGoogle Scholar
  188. 188.
    Nishimura, T., Sanada, Y., Matsuo, T., Okobira, T., Mylonas, E., Yagi, N., Sakurai, K.: A bimolecular micelle constructed from amphiphilic pillar[5]arene molecules. Chem. Commun. 49, 3052–3054 (2013)CrossRefGoogle Scholar
  189. 189.
    Gao, L., Zheng, B., Yao, Y., Huang, F.: Responsive reverse giant vesicles and gel from self-organization of a bolaamphiphilic pillar[5]arene. Soft Matter 9, 7314–7319 (2013)CrossRefGoogle Scholar
  190. 190.
    Yao, Y., Li, J., Dai, J., Chi, X., Xue, M.: A water-soluble pillar[6]arene: synthesis, host–guest chemistry, controllable self-assembly, and application in controlled release. RSC Adv. 4, 9039–9043 (2014)CrossRefGoogle Scholar
  191. 191.
    Yao, Y., Chi, X., Zhou, Y., Huang, F.: A bola-type supra-amphiphile constructed from a water-soluble pillar[5]arene and a rod-coil molecule for dual fluorescent sensing. Chem. Sci. 5, 2778–2782 (2014)CrossRefGoogle Scholar
  192. 192.
    Si, W., Hu, X.-B., Liu, X.-H., Fan, R., Chen, Z., Weng, L., Hou, J.-L.: Self-assembly and proton conductance of organic nanotubes from pillar[5]arenes. Tetrahedron Lett. 52, 2484–2487 (2011)CrossRefGoogle Scholar
  193. 193.
    Aoki, T., Ogoshi, T., Yamagishi, T.: Chemically responsive supramolecular structural change of pillar[5]arene nanotubes. Chem. Lett. 40, 795–797 (2011)CrossRefGoogle Scholar
  194. 194.
    Yao, Y., Xue, M., Chen, J., Zhang, M., Huang, F.: An amphiphilic pillar[5]arene: synthesis, controllable self-assembly in water, and application in calcein release and TNT adsorption. J. Am. Chem. Soc. 134, 15712–15715 (2012)CrossRefGoogle Scholar
  195. 195.
    Yu, G., Ma, Y., Han, C., Yao, Y., Tang, G., Mao, Z., Gao, C., Huang, F.: A sugar-functionalized amphiphilic pillar[5]arene: synthesis, self-assembly in water, and application in bacterial cell agglutination. J. Am. Chem. Soc. 135, 10310–10313 (2013)CrossRefGoogle Scholar
  196. 196.
    Yao, Y., Xue, M., Zhang, Z., Zhang, M., Wang, Y., Huang, F.: Gold nanoparticles stabilized by an amphiphilic pillar[5]arene: preparation, self-assembly into composite microtubes in water and application in green catalysis. Chem. Sci. 4, 3667–3672 (2013)CrossRefGoogle Scholar
  197. 197.
    Yu, G., Xue, M., Zhang, Z., Li, J., Han, C., Huang, F.: A water-soluble pillar[6]arene: synthesis, host–guest chemistry, and its application in dispersion of multiwalled carbon nanotubes in water. J. Am. Chem. Soc. 134, 13248–13251 (2012)CrossRefGoogle Scholar
  198. 198.
    Yang, J., Yu, G., Xia, D., Huang, F.: A pillar[6]arene-based UV-responsive supra-amphiphile: synthesis, self-assembly, and application in dispersion of multiwalled carbon nanotubes in water. Chem. Commun. 50, 3993–3995 (2014)CrossRefGoogle Scholar
  199. 199.
    Si, W., Chen, L., Hu, X.-B., Tang, G., Chen, Z., Hou, J.-L., Li, Z.-T.: Selective artificial transmembrane channels for protons by formation of water wires. Angew. Chem. Int. Ed. 50, 12564–12568 (2011)CrossRefGoogle Scholar
  200. 200.
    Hu, X.-B., Chen, Z., Tang, G., Hou, J.-L., Li, Z.-T.: Single-molecular artificial transmembrane water channels. J. Am. Chem. Soc. 134, 8384–8387 (2012)CrossRefGoogle Scholar
  201. 201.
    Chen, L., Si, W., Zhang, L., Tang, G., Li, Z.-T., Hou, J.-L.: Chiral selective transmembrane transport of amino acids through artificial channels. J. Am. Chem. Soc. 135, 2152–2155 (2013)CrossRefGoogle Scholar
  202. 202.
    Si, W., Li, Z.-T., Hou, J.-L.: Voltage-driven reversible insertion into and leaving from a lipid bilayer: tuning transmembrane transport of artificial channels. Angew. Chem. Int. Ed. 53, 4578–4581 (2014)CrossRefGoogle Scholar
  203. 203.
    Pan, M., Xue, M.: A pillar[2]arene[3]hydroquinone which can self-assemble to form a molecular zipper in the solid state. RSC Adv. 3, 20287–20290 (2013)CrossRefGoogle Scholar
  204. 204.
    Nierengarten, I., Guerra, S., Holler, M., Nierengarten, J.-F., Deschenaux, R.: Building liquid crystals from the 5-fold symmetrical pillar[5]arene core. Chem. Commun. 48, 8072–8074 (2012)CrossRefGoogle Scholar
  205. 205.
    Nierengarten, I., Guerra, S., Holler, M., Karmazin-Brelot, L., Barberá, J., Deschenaux, R., Nierengarten, J.-F.: Macrocyclic effects in the mesomorphic properties of liquid-crystalline pillar[5]- and pillar[6]arenes. Eur. J. Org. Chem. 2013, 3675–3684 (2013)CrossRefGoogle Scholar
  206. 206.
    Cao, D., Meier, H.: Pillar[n]arenes—a novel, highly promising class of macrocyclic host molecules. Asian J. Org. Chem. 3, 244–262 (2014)CrossRefGoogle Scholar
  207. 207.
    Zhou, J., Chen, M., Xie, J., Diao, G.: Synergistically enhanced electrochemical response of host–guest recognition based on ternary nanocomposites: reduced graphene oxide–amphiphilic pillar[5]arene–gold nanoparticles. ACS Appl. Mater. Interfaces 5, 11218–11224 (2013)CrossRefGoogle Scholar
  208. 208.
    Yan, X., Wei, P., Li, Z., Zheng, B., Dong, S., Huang, F., Zhou, Q.: A dynamic [1]catenane with pH-responsiveness formed via threading-followed-by-complexation. Chem. Commun. 49, 2512–2514 (2013)CrossRefGoogle Scholar
  209. 209.
    Ogoshi, T., Yamafuji, D., Yamagishi, T., Brouwer, A.M.: Förster resonance energy transfer by formation of a mechanically interlocked [2]rotaxane. Chem. Commun. 49, 5468–5470 (2013)CrossRefGoogle Scholar
  210. 210.
    Ogoshi, T., Demachi, K., Masaki, K., Yamgishi, T.: Diastereoselective synthesis of meso-pillar[6]arenes by bridging between hydroquinone units in an alternating up-and-down manner. Chem. Commun. 49, 3952–3954 (2013)CrossRefGoogle Scholar
  211. 211.
    Ma, Y., Yang, J., Li, J., Chi, X., Xue, M.: A cationic water-soluble pillar[6]arene: synthesis, host–guest properties, and self-assembly with amphiphilic guests in water. RSC Adv. 3, 23953–23956 (2013)CrossRefGoogle Scholar
  212. 212.
    Chen, Y., He, M., Li, B., Wang, L., Meier, H., Cao, D.: A monophosphoryl copillar[5]arene: synthesis and host–guest complexation with alkanols. RSC Adv. 3, 21405–21408 (2013)CrossRefGoogle Scholar
  213. 213.
    Pan, M., Xue, M.: Pillar[5]arene derivatives with three different kinds of repeating units: first examples, crystal structures and selective preparation. RSC Adv. 4, 260–263 (2014)CrossRefGoogle Scholar
  214. 214.
    Yu, G., Yang, J., Xia, D., Yao, Y.: An enzyme-responsive supra-amphiphile constructed by pillar[5]arene/acetylcholine molecular recognition. RSC Adv. 4, 18763–18771 (2014)CrossRefGoogle Scholar
  215. 215.
    Wu, J., Sun, S., Feng, X., Shi, J., Hu, X.-Y., Wang, L.: Controllable aggregation-induced emission based on tetraphenylethylene-functionalized pillar[5]arene via host–guest recognition. Chem. Commun. 50, 9122–9125 (2014)CrossRefGoogle Scholar
  216. 216.
    Yang, J., Chi, X., Li, Z., Yu, G., He, J., Abliz, Z., Li, N., Huang, F.: A water-soluble pillar[10]arene: synthesis, pH-responsive host–guest complexation, and application in constructing a supra-amphiphile. Org. Chem. Front. 1, 630–633 (2014)CrossRefGoogle Scholar
  217. 217.
    Zhou, Y., Yao, Y., Xue, M.: Well-defined nano-sunflowers formed by selfassembly of a rod-coil amphiphile in water and their morphology transformation based on a water-soluble pillar[5]arene. Chem. Commun. 50, 8040–8042 (2014)CrossRefGoogle Scholar
  218. 218.
    Gao, L., Zhang, Z., Zheng, B., Huang, F.: Construction of muscle-like metallo-supramolecular polymers from a pillar[5]arene-based [c2]daisy chain. Polym. Chem. (2014). doi: 10.1039/C4PY00733F Google Scholar
  219. 219.
    Yu, G., Tang, G., Huang, F.: Supramolecular enhancement of aggregation-induced emission and its application in cancer cell imaging. J. Mater. Chem. C 2, 6609–6617 (2014)CrossRefGoogle Scholar
  220. 220.
    Ogoshi, T., Kayama, H., Aoki, T., Yamagishi, T., Ohashi, R., Mizuno, M.: Extension of polyethylene chains by formation of polypseudorotaxane structures with perpentylated pillar[5]arenes. Polym. J. 46, 77–81 (2014)CrossRefGoogle Scholar
  221. 221.
    Nierengarten, I., Nothisen, M., Sigwalt, D., Biellmann, T., Holler, M., Remy, J.-S., Nierengarten, J.-F.: Polycationic pillar[5]arene derivatives: interaction with DNA and biological applications. Chem. Eur. J. 19, 17552–17558 (2013)CrossRefGoogle Scholar
  222. 222.
    Nierengarten, I., Buffet, K., Holler, M., Vincent, S.P., Nierengarten, J.-F.: A mannosylated pillar[5]arene derivative: chiral information transfer and antiadhesive properties against uropathogenic bacteria. Tetrahedron Lett. 54, 2398–2402 (2013)CrossRefGoogle Scholar
  223. 223.
    Zhang, H., Ma, X., Nguyen, K.T., Zeng, Y., Tai, S., Zhao, Y.: Water-soluble pillararene-functionalized graphene oxide for in vitro Raman and fluorescence dual-mode imaging. ChemPlusChem 79, 462–469 (2014)CrossRefGoogle Scholar
  224. 224.
    Tian, M., Chen, D.-X., Sun, Y.-L., Yang, Y.-W., Jia, Q.: Pillararene-functionalized Fe3O4 nanoparticles as magnetic solid-phase extraction adsorbent for pesticide residue analysis in beverage samples. RSC Adv. 3, 22111–22119 (2013)CrossRefGoogle Scholar
  225. 225.
    Yao, Y., Jie, K., Zhou, Y., Xue, M.: Reversible assembly of silver nanoparticles driven by host–guest interactions based on water-soluble pillar[n]arenes. Chem. Commun. 50, 5072–5074 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.State Key Laboratory of Supramolecular Structure and Materials, College of ChemistryJilin UniversityChangchunPeople’s Republic of China

Personalised recommendations