One-pot synthesis of p-tert-butylthiacalix[6/8]arenes

  • Takashi Kimuro
  • Manabu Yamada
  • Fumio Hamada
Short Communication


Since Miyano and co-workers’ facile synthesis of p-tert-butylthiacalix[4]arene (1), many studies related to 1 have been published. In contrast, because of their extremely low yields, investigation of the larger macrocycles p-tert-butylthiacalix[6]arene (2) and p-tert-butylthiacalix[8]arene (3) has been limited. An improved synthetic method for 13 by the heating of p-tert-butylphenol, sulfur, and catalytic NaOH in a one-pot, two-stage procedure is described. The first step (oligomer formation) proceeds optimally at 180 °C for 24 h with 2 mol % NaOH. The second step (cyclization) is conducted at 230 °C with 50 mol % NaOH. Investigations by 1H NMR spectroscopy and matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF MS) revealed that 2 and 3 transform into 1 and oligomers at the high temperature required for the cyclization step. Moreover, even 1 transforms into oligomers at high temperature for 48 h. Heating times of 5 and 24 h were optimal for the preparation of 2 (18.1 %) and 3 (4.6 %), respectively. A comparison of the thermal stability of the p-tert-butylthiacalix[n]arenes determined their stability in the order 1, 2, and 3.


Thiacalix[n]arenes Cyclization Macrocyclic compounds Synthetic method 

Supplementary material

10847_2014_435_MOESM1_ESM.docx (2.8 mb)
Supplementary material 1 (DOCX 2852 kb)


  1. 1.
    Morohashi, N., Narumi, F., Iki, N., Hattori, T., Miyano, S.: Thiacalixarenes. Chem. Rev. 106, 5291–5316 (2006)CrossRefGoogle Scholar
  2. 2.
    Iki, N., Miyano, S.: Can thiacalixarene surpass calixarene? J. Inclusion Phenom. Macrocycl. Chem. 41, 99–105 (2001)CrossRefGoogle Scholar
  3. 3.
    Asfari, Z., Bohmer, V., Harrowfield, J.M., Vicens, J.: Calixarenes 2001. Kluwer Academic Publishers, Dordrecht (2001)Google Scholar
  4. 4.
    Mandolini, L., Ungaro, R.: Calixarenes in action. Imperial College Press, London (2000)CrossRefGoogle Scholar
  5. 5.
    Gutsche, C.D.: Calixarenes revisited. The Royal Society of Chemistry, Cambridge (1998)Google Scholar
  6. 6.
    Gutsche, C.D.: Calixarenes. The Royal Society of Chemistry, Cambridge (1989)Google Scholar
  7. 7.
    Torgov, V.G., Us, T.V., Korda, T.M., Kostin, G.A., Kalchenko, V.I.: Extraction of palladium with thiacalix[4]arenes from nitric acid nitrate-nitrite solutions. Russ. J. Inorg. Chem. 57, 1621–1629 (2012)CrossRefGoogle Scholar
  8. 8.
    Itoh, S., Li, C., Yamada, M., Akama, M., Shimakawa, Y., Kondo, Y., Hamada, F.: Selective extraction ability of thiacalix[6]arene derivatives from rare metal mixed solution. Int. J. Soc. Mater. Eng. Resour. 17, 211–215 (2010)CrossRefGoogle Scholar
  9. 9.
    Stoikov, I.I., Yushkova, E.A., Zhukov, A.Y., Zharov, I., Antipin, I.S., Konovalov, A.I.: The synthesis of p-tert-butylthiacalix[4]arenes functionalized with secondary amide groups at the lower rim and their extraction properties and self-assembly into nanoscale aggregates. Tetrahedron 64, 7112–7121 (2008)CrossRefGoogle Scholar
  10. 10.
    Yamada, M., Shibayama, A., Kondo, Y., Hamada, F.: Selective extraction of precious metal from automotive catalyst residue by thiacalix[6]arene derivatives. Int. J. Soc. Mater. Eng. Resour. 15, 13–15 (2007)CrossRefGoogle Scholar
  11. 11.
    Iki, N., Morohashi, N., Yamane, Y., Miyano, S.: Metal-ion extractability of sulfur-bridged oligomers of phenol; distinct effect of the number of sulfur bridges rather than the cyclic/acyclic form. Bull. Chem. Soc. Jpn 76, 1763–1768 (2003)CrossRefGoogle Scholar
  12. 12.
    Katagiri, H., Iki, N., Matsunaga, Y., Kabuto, C., Miyano, S.: Thiacalix[4]aniline as a highly specific extractant for Au(III) and Pd(II) ions. Chem. Commun. 18, 2080–2081 (2002)CrossRefGoogle Scholar
  13. 13.
    Yamada, M., Shimakawa, Y., Hamada, F.: Thiacalix[4]arene–alkali metal assemblies: crystal structures and guest-binding capabilities of supramolecular architectures supported by metal coordination and cation–π interactions. Tetrahedron 67, 7392–7399 (2011)CrossRefGoogle Scholar
  14. 14.
    Yamada, M., Kondo, Y., Iki, N., Kabuto, C., Hamada, F.: Hydrophobic and metal coordination interacted architecture based on p-tert-butylthiacalix[4]arene–potassium complex and its vapor absorption capability. Tetrahedron Lett. 49, 3906–3911 (2008)CrossRefGoogle Scholar
  15. 15.
    Kondo, Y., Endo, K., Hamada, F.: Potassium–thiacalix[8]arene assembly: structure and guest sorption profiles. Chem. Commun. 6, 711–712 (2005)CrossRefGoogle Scholar
  16. 16.
    Endo, K., Kondo, Y., Aoyama, Y., Hamada, F.: Guest-binding properties of functionally crystal based on metal complex of p-tert-butylthiacalix[6]arene. Tetrahedron Lett. 44, 1355–1358 (2003)CrossRefGoogle Scholar
  17. 17.
    Evtugyn, G.A., Shamagsumova, R.V., Sitdikov, R.R., Stoikov, I.I., Antipin, I.S., Ageeva, M.V., Hianik, T.: Dopamine sensor based on a composite of silver nanoparticles implemented in the electroactive matrix of calixarenes. Electroanalysis 23, 2281–2289 (2011)CrossRefGoogle Scholar
  18. 18.
    Kim, J.S., Quang, D.T.: Calixarene-derived fluorescent probes. Chem. Rev. 107, 3780–3799 (2007)CrossRefGoogle Scholar
  19. 19.
    Ben, A.M., Bureau, C., Martelet, C., Jaffrezic-Renault, N., Lamartine, R., Ben, O.H.: Comparison of thiacalix[4]arene thin films behaviour on different transducers for copper ion detection. Mater. Sci. Eng. C 7, 83–89 (2000)Google Scholar
  20. 20.
    Grady, T., Butler, T., MacCraith, B.D., Diamond, D., McKeyvey, M.A.: Optical sensor for gaseous ammonia with tuneable sensitivity. Analyst 122, 803–806 (1997)CrossRefGoogle Scholar
  21. 21.
    Aoki, I., Sakaki, T., Shinkai, S.: A new metal sensory system based on intramolecular fluorescence quenching on the ionophoric calix[4]arene ring. J. Chem. Soc. Chem. Commun. 9, 730–732 (1992)CrossRefGoogle Scholar
  22. 22.
    Jin, T., Ichikawa, K., Koyama, T.: A fluorescent calix[4]arene as an intramolecular excimer-forming Na+ sensor in nonaqueous solution. J. Chem. Soc. Chem. Commun. 6, 499–501 (1992)CrossRefGoogle Scholar
  23. 23.
    Iki, N., Kabuto, C., Fukushima, T., Kumagai, H., Takeya, H., Miyanari, S., Miyashi, T., Miyano, S.: Synthesis of p-tert-butylthiacalix[4]arene and its inclusion property. Tetrahedron 56, 1437–1443 (2000)CrossRefGoogle Scholar
  24. 24.
    Kajiwara, T., Kon, N., Yokozawa, S., Ito, T., Iki, N., Miyano, S.: Synthesis, structure, and ferromagnetic behavior of decacopper(II) cluster complex supported by hexaanionic p-tert-butylthiacalix[6]arene. J. Am. Chem. Soc. 124, 11274–11275 (2002)CrossRefGoogle Scholar
  25. 25.
    Yamada, M., Kondo, Y., Hamada, F.: Hydrogen-bonded architecture based on p-sulfonatothiacalix[6]arene complex with dysprosium(III) cations and water molecules. Tetrahedron Lett. 49, 1790–1794 (2008)CrossRefGoogle Scholar
  26. 26.
    Yamada, M., Kondo, Y., Hamada, F.: The X-ray crystal structures of p-sulfonatothiacalix[6]arene inclusion complexes with lanthanide metal ions (M = Gd, Ho and Er) and water molecules. Int. J. Soc. Mater. Eng. Resour. 15, 50–56 (2008)CrossRefGoogle Scholar
  27. 27.
    Yamada, M., Hamada, F.: Supramolecular assemblies with water-soluble p-sulfonatothiacalix[6]arene lanthanide complexes: one-dimensional ‘ladder-type’ coordination polymers and one-dimensional hydrogen-bonded polymers. CrystEngComm 15, 5703–5712 (2013)CrossRefGoogle Scholar
  28. 28.
    Kondo, Y., Endo, K., Iki, N., Miyano, S., Hamada, F.: Synthesis and Crystal structure of p-tert-butylthiacalix[8]arene: a new member of thiacalixarenes. J. Inclusion Phenom. Macrocycl. Chem. 52, 45–49 (2005)CrossRefGoogle Scholar
  29. 29.
    Gutsche, C.D., Dhawan, B., No, K.H., Muthukrishnan, R.: Calixarenes. 4. The synthesis, characterization, and properties of the calixarenes from p-tert-butylphenol. J. Am. Chem. Soc. 103, 3782–3792 (1981)CrossRefGoogle Scholar
  30. 30.
    Kon, N., Iki, N., Miyano, S.: Synthesis of p-tert-butylthiacalix[n]arenes (n = 4, 6, and 8) from a sulfur-bridged a cyclic dimer of p-tert-butylphenol. Tetrahedron Lett. 43, 2231–2234 (2002)CrossRefGoogle Scholar
  31. 31.
    Kondo, Y., Hamada, F.: Improvement method for synthesis of p-tert-butylthiacalix[n]arenes: effect of using base catalyst with carboxylic acid. J. Inclusion Phenom. Macrocycl. Chem. 58, 123–126 (2007)CrossRefGoogle Scholar
  32. 32.
    Gutsche, C.D., Johnston, D.E., Stewart, D.R.: Pathways for the reversion of p-tert-butylcalix[8]arene to p-tert-butylcalix[4]arene. J. Org. Chem. 64, 3747–3750 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of Applied Chemistry for Environments, Graduate School of Engineering and Resource ScienceAkita UniversityAkitaJapan
  2. 2.Research Center for Engineering Science, Graduate School of Engineering and Resource ScienceAkita UniversityAkitaJapan

Personalised recommendations