Lariat ethers in the chiral recognition of amino acid esters:electrospray ionization mass spectrometry investigation

  • Zemfira A. Bredikhina
  • Dilyara R. Sharafutdinova
  • Olga B. Bazanova
  • Vasily M. Babaev
  • Robert R. Fayzullin
  • Ildar Kh. Rizvanov
  • Alexander A. Bredikhin
Original Article


The ability of the crown ethers (14), containing the ortho- or para- methoxyphenoxy-methyl substituents in their structure, to chiral recognition in reference to amino acid esters has been investigated by electrospray ionization mass spectrometry (ESI-MS). The method allows registering the diastereomeric complexes between the studied crowns as hosts and the protonated alanine, phenylglycine and phenylalanine methyl esters as guests in the gas phase. ESI-MS experiments using isotopically labeled guests provide robust and reproducible results, indicating a moderate degree of chiral discrimination in the series of the studied crown ethers. ESI-MS experiments using achiral amine as a reference yielded the results comparable with the previous method. It has been found that (S)-enantiomers of the crowns bind predominately (S)-enantiomers of the amino acid esters, and vice-versa. It has been shown that the chiral ortho-substituted crown (S)-1 demonstrates the more pronounced values for chiral discrimination as compared with the para-substituted crown (S)-2. This fact indicates the interrelationship between the chiral recognition and the lariat nature of crown 1. Increasing the size of the cavity and the presence of a flat aromatic moiety in crowns 3 and 4 strengthens their complexing ability, simultaneously weakening the enantioselectivity of the complexation.


Crown ethers Amino acids Host-guest chemistry Chiral recognition Lariat effect Electrospray ionization 


  1. 1.
    Zhang, M., Zhu, K., Huang, F.: Improved complexation of paraquat derivatives by the formation of crown ether-based cryptands. Chem. Commun. 46, 8131–8141 (2010)CrossRefGoogle Scholar
  2. 2.
    Tsukanov, A.V., Dubonosov, A.D., Bren, V.A., Minkin, V.I.: Organic chemosensors with crown-ether fragments. Chem. Heterocycl. Compd. 44, 899–921 (2008)CrossRefGoogle Scholar
  3. 3.
    Gokel, G.W., Leevy, W.M., Weber, M.E.: Sensors for ions and molecular scaffolds for materials and biological models. Chem. Rev. 104, 2723–2750 (2004)CrossRefGoogle Scholar
  4. 4.
    Spath, A., Knig, B.: Molecular recognition of organic ammonium ions in solution using synthetic receptors. Beilstein J. Org. Chem. 6, 1–111 (2010)CrossRefGoogle Scholar
  5. 5.
    Zhang, X.X., Bradshaw, J.S., Izatt, R.M.: Enantiomeric recognition of amine compounds by chiral macrocyclic receptors. Chem. Rev. 95, 3313–3362 (1997)CrossRefGoogle Scholar
  6. 6.
    Gokel, G.W., Schall, O.F.: Lariat ethers. In: Gokel, G.W. (ed.) Comprehensive Supramolecular Chemistry, pp. 97–152. Pergamon, New York (1996)Google Scholar
  7. 7.
    Abbas, A.A., Elwahy, A.H.M.: Synthesis of C-pivot lariat ethers. J. Heterocycl. Chem. 46, 1035–1079 (2009)CrossRefGoogle Scholar
  8. 8.
    Hyun, M.H.: Characterization of liquid chromatographic chiral separation on chiral crown ether stationary phases. J. Sep. Sci. 26, 242–250 (2003)CrossRefGoogle Scholar
  9. 9.
    Lämmerhofer, M.: Chiral recognition by enantioselective liquid chromatography: mechanisms and modern chiral stationary phases. J. Chromatogr. A 1217, 814–856 (2010)CrossRefGoogle Scholar
  10. 10.
    Paik, M.-J., Kang, J.S., Huang, B.S., Carey, J.R., Lee, W.: Development and application of chiral crown ethers as selectors for chiral separation in high-performance liquid chromatography and nuclear magnetic resonance spectroscopy. J. Chromatogr. A 1274, 1–5 (2013)CrossRefGoogle Scholar
  11. 11.
    Hembury, G.A., Borovkov, V.V., Inoue, Y.: Chirality-sensing supramolecular systems. Chem. Rev. 108, 1–73 (2008)CrossRefGoogle Scholar
  12. 12.
    Nakatsuji, Y., Nakahara, Y., Muramatsu, A., Kida, T., Akashi, M.: Novel C2-symmetric chiral 18-crown-6 derivatives with two aromatic sidearms as chiral NMR discriminating agents. Tetrahedron Lett. 46, 4331–4335 (2005)CrossRefGoogle Scholar
  13. 13.
    Ema, T.: Synthetic macrocyclic receptors in chiral analysis and separation. J. Incl. Phenom. Macrocycl. Chem. 74, 41–55 (2012)CrossRefGoogle Scholar
  14. 14.
    Zhou, L., Lin, Z., Reamer, R.A., Mao, B., Ge, Z.: Stereoisomeric separation of pharmaceutical compounds using CE with a chiral crown ether. Electrophoresis 28, 2658–2666 (2007)CrossRefGoogle Scholar
  15. 15.
    Schug, K.A., Lindner, W.: Chiral molecular recognition for the detection and analysis of enantiomers by mass spectrometric methods. J. Sep. Sci. 28, 1932–1955 (2005)CrossRefGoogle Scholar
  16. 16.
    Speranza, M.: Enantioselectivity in gas-phase ion-molecule reactions. Int. J. Mass Spectrom. 232, 277–317 (2004)CrossRefGoogle Scholar
  17. 17.
    Sawada, M., Takai, Y., Yamada, H., Kaneda, T., Kamada, K., Mizooku, T., Hirose, K., Tobe, Y., Naemura, K.: Chiral amino acid recognition detected by electrospray ionization (ESI) and fast atom bombardment (FAB) mass spectrometry (MS) coupled with the enantiomer-labeled (EL) guest method. J. Chem. Soc. Perkins Trans. II 3, 701–710 (1998)CrossRefGoogle Scholar
  18. 18.
    Liang, Y., Bradshaw, J.S., Izatt, R.M., Pope, R.M., Dearden, D.V.: Analysis of enantiomeric excess using mass spectrometry: fast atom bombardment/sector and electrospray ionization/Fourier transform mass spectrometric approaches. Int. J. Mass Spectrom. 185/186/187, 977–988 (1999)Google Scholar
  19. 19.
    Gerbaux, P., De Winter, J., Cornil, D., Ravicini, K., Pesesse, G., Cornil, J., Flammang, R.: Noncovalent interactions between ([18]crown-6)-tetracarboxylic acid and amino acids: electrospray-ionization mass spectrometry investigation of the chiral-recognition processes. Chem. Eur. J. 14, 11039–11049 (2008)CrossRefGoogle Scholar
  20. 20.
    Sawada, M., Takai, Y., Yamada, H., Yoshikawa, M., Arakawa, R., Tabuchi, H., Takada, M., Tanaka, J.: Depression of the apparent chiral recognition ability obtained in the host-guest complexation systems by electrospray and nano-electrospray ionization mass spectrometry. Eur. J. Mass Spectrom. 10, 27–37 (2004)CrossRefGoogle Scholar
  21. 21.
    Schalley, Ch.A.: Molecular recognition and supramolecular chemistry. Mass Spectrom. Rev. 20, 253–309 (2001)Google Scholar
  22. 22.
    Cera, L., Schalley, Ch.A.: Supramolecular reactivity in the gas phase: investigating the intrinsic properties of non-covalent complexes. Chem. Soc. Rev. 43, 1800–1812 (2014)Google Scholar
  23. 23.
    Sawada, M., Takai, Y., Yamada, H., Hirayama, S., Kaneda, T., Tanaka, T., Kamada, K., Mizooku, T., Takeuchi, S., Ueno, K., Hirose, K., Tobe, Y., Naemura, K.: Chiral recognition in host-guest complexation determined by the enantiomer-labeled guest method using fast atom bombardment mass spectrometry. J. Am. Chem. Soc. 117, 7726–7736 (1995)CrossRefGoogle Scholar
  24. 24.
    Steed, J.W., Atwood, J.L.: Supramolecular Chemistry, 2nd edn. Wiley, Chichester (2009)CrossRefGoogle Scholar
  25. 25.
    Sharafutdinova, D.R., Fayzullin, R.R., Bazanova, O.V., Bredikhina, Z.A., Rizvanov, I.H., Bredikhin, A.A.: Mass spectrometric investigation of the side-arm lariat effect of ortho- and para-methoxyphenoxymethyl-15-crown-5 in the gas phase. J. Anal. Chem. 68, 1178–1182 (2013)CrossRefGoogle Scholar
  26. 26.
    Bredikhin, A.A., Gubaidullin, A.T., Bredikhina, Z.A., Fayzullin, R.R.: Crystallographic evidence of side-arm lariat effect in the series of chiral ortho- and para-methoxyphenoxymethyl-15-crown-5 complexes with sodium perchlorate. J. Mol. Struct. 1032, 176–184 (2013)CrossRefGoogle Scholar
  27. 27.
    Bredikhina, Z.A., Eliseenkova, R.M., Fayzullin, R.R., Novikova, V.G., Kharlamov, S.V., Sharafutdinova, D.R., Latypov, Sh.K, Bredikhin, A.A.: Synthesis and extraction properties of some lariat ethers derived from the spontaneously resolved guaifenesin, 3-(2-methoxyphenoxy)propane-1,2-diol. ARKIVOC (x) 16–32 (2011)Google Scholar
  28. 28.
    Bredikhina, Z.A., Novikova, V.G., Zakharychev, D.V., Bredikhin, A.A.: Solid state properties and effective resolution procedure for guaifenesin, 3-(2-metoxyphenoxy)-1,2-propanediol. Tetrahedron Asymmetry 17, 3015–3020 (2006)CrossRefGoogle Scholar
  29. 29.
    Kristensen, T.E., Vestli, K., Hansen, F.K., Hansen, T.: New phenylglycine-derived primary amine organocatalysts for the preparation of optically active warfarin. Eur. J. Org. Chem. 30, 5185–5191 (2009)CrossRefGoogle Scholar
  30. 30.
    Kyba, E.P., Timko, J.M., Kaplan, L.J., de Jong, F., Gokel, G.W., Cram, D.J.: Host-guest complexation. 11. Survey of chiral recognition of amine and amino ester salts by dilocular bisdinaphthyl hosts. J. Am. Chem. Soc. 100, 4555–4568 (1978)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Zemfira A. Bredikhina
    • 1
  • Dilyara R. Sharafutdinova
    • 1
  • Olga B. Bazanova
    • 1
  • Vasily M. Babaev
    • 1
  • Robert R. Fayzullin
    • 1
  • Ildar Kh. Rizvanov
    • 1
  • Alexander A. Bredikhin
    • 1
  1. 1.A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific CenterRussian Academy of SciencesKazanRussia

Personalised recommendations