Mini-review: calixarene liquid crystals

  • Fafu Yang
  • Hongyu Guo
  • Jacques Vicens
Review Article


Calixarene liquid crystals were important part among calixarene derivatives. The synthesis and mesomorphic properties of all kinds of calixarene liquid crystala have been discussed and reviewed. There are two methods to prepare calixarene liquid crystals. One way is to introduce the corresponding functional groups with long alkyl chains, which usually afford columnar liquid crystal with a rigid bowlic core. The organization of liquid crystals possesses interesting changes after the complexation of guests. Another way is to introduce triphenylene unit to obtain calixarenes bowlic column with triphenylene units as ancillary lateral columns or triphenylene column with calixarene units on ancillary side. Moreover, they showed interesting conversion between two kinds of liquid crystals before and after complexation with ions.


Calixarene Liquid crystal Alkyl chain Triphenylene Complexation 



Financial support from the National Natural Science Foundation of China (No: 20402002), Fujian Natural Science Foundation of China (No. 2009J01019), the Program for Innovative Research Team in Science and Technology in Fujian Province University and Program for Excellent young researchers in University of Fujian Province (JA10056) were greatly acknowledged.


  1. 1.
    Collings, P.J., Hird, M.: Introduction to liquid crystals chemistry and physics. Taylor and Francis, London (1997)CrossRefGoogle Scholar
  2. 2.
    Demu, D., Goodby, J.W., Gray, G.W.: Handbook of liquid crystals. Wiley, Chichester (1998)CrossRefGoogle Scholar
  3. 3.
    Toledano, P., Neto, A.M.F.: Phase transitions in complex fluids. World Scientific, Singapore (1998)CrossRefGoogle Scholar
  4. 4.
    Lynch, M.L., Spicer, P.T.: Bicontinuous liquid crystals. Taylor & Francis/CRC Press, London (2005)CrossRefGoogle Scholar
  5. 5.
    Asfari, Z., Böhmer, V., Harrowfield, J., Vicens, J.: Calixarenes 2001. Kluwer Academic Publishers, Dordrecht (2001)Google Scholar
  6. 6.
    Gutsche, C.D.: Calixarenes, an introduction. Royal Society of Chemistry, London (2008)Google Scholar
  7. 7.
    Joseph, R., Rao, C.P.: Ion and molecular recognition by lower rim 1,3-di-conjugates of calix[4]arene as receptors. Chem. Rev. 111, 4658–4702 (2011)CrossRefGoogle Scholar
  8. 8.
    Kim, J.S., Quang, D.T.: Calixarene-derived fluorescent probes. Chem. Rev. 107, 3780–3799 (2007)CrossRefGoogle Scholar
  9. 9.
    Mutihac, L., Lee, J.H., Kim, J.S., Vicens, J.: Recognition of amino acids by functionalized calixarenes. Chem. Soc. Rev. 40, 2777–2796 (2011)CrossRefGoogle Scholar
  10. 10.
    Gutsche, C. D.: Calixarenes Revisited. Monographs in supramolecular chemistry. In: Stoddart, J F. (ed.). The Royal Society of Chemistry, Cambridge (1998)Google Scholar
  11. 11.
    Casnati, A., Sansone, F., Ungaro, R.: Calixarene receptors in ion recognition and sensing. Advances in supramolecular chemistry. Cerberus Press Inc., South Miami (2004)Google Scholar
  12. 12.
    Yang, F., Hong, B., Chai, X., Yin, F., Chen, Y.: Excellent Ag+ selective receptors: syntheses and complexation properties of novel biscalix[4]arene with benzalazine groups. Supramol. Chem. 21, 691–698 (2009)CrossRefGoogle Scholar
  13. 13.
    Yang, F., Zheng, X., Guo, H., Liu, C., Guo, : The synthesis and complexation property of novel of biscalixarene: dumbbell shaped biscalix[4]-1,3-aza-crown. J. Incl. Phenom. Macrocycl. Chem. 62, 371–375 (2008)CrossRefGoogle Scholar
  14. 14.
    Cometti, G., Dalcanale, E., Du Vosel, A., Levelut, A.M.: New bowl-shaped columnar liquid crystals. J. Chem. Soc. Chem. Commun. 2, 163–165 (1990)CrossRefGoogle Scholar
  15. 15.
    Cometti, G., Dalcanale, E., Du Vosel, A.: New columnar liquid crystals correlation between molecular structure and mesomorphic behavior. Liq. Cryst. 8, 639–649 (1990)CrossRefGoogle Scholar
  16. 16.
    Abis, L., Arrighi, G., Cometti, E., Dalcanale, E., Du Vosel, A.: Deuterium NMR investigation of a new class of macrocyclic columnar liquid crystal. Liq. Cryst. 9, 277–284 (1991)CrossRefGoogle Scholar
  17. 17.
    Komori, T., Shinkai, S.: A new class of mesomorphic materials designed from cslix[n]arenes. Chem. Lett. 8, 901–904 (1992)CrossRefGoogle Scholar
  18. 18.
    Cometti, G., Dalcanale, E., Vosel, A.D.: A new, conformationally mobile macrocyclic core for bowl-shaped columnar liquid crystals. Liq. Cryst. 11, 93–100 (1992)CrossRefGoogle Scholar
  19. 19.
    Xu, B., Swager, T.M.: Rigid bowlic liquid crystals based on tungsten-oxo calix[4]arenes: host-guest effects and head-to-tail organization. J. Am. Chem. Soc. 115, 1159–1160 (1993)CrossRefGoogle Scholar
  20. 20.
    Komori, T., Shinkai, S.: Novel columnar liquid crystals designed from cone-shaped calix[4]arenes. The rigid bowl is essential for the formation of the liquid crystal phase. Chem. Lett. 12, 1455–1458 (1993)CrossRefGoogle Scholar
  21. 21.
    Xu, B., Swager, T.M.: Host-guest mesomorphism: cooperative stabilization of a bowlic columnar phase. J. Am. Chem. Soc. 117, 5011–5012 (1995)CrossRefGoogle Scholar
  22. 22.
    Koh, K.N., Araki, K., Komori, T., Shinkai, S.: Thermotropic liquid crystal construction through the hydrogen-bonds between a stilbazole calix[4]arene and carboxylic acids. Tetrahedron Lett. 36, 5191–5194 (1995)CrossRefGoogle Scholar
  23. 23.
    Budig, H., Diele, S., Paschke, R., Tschierske, C.: Mesomorphic properties and monolayer behavior of novel liquid crystalline exo-calix[4]arene derivatives. J. Chem. Soc. 2(10), 1901–1904 (1996)Google Scholar
  24. 24.
    Matsuzawa, Y., Seki, T., Ichimura, K.: Mixed monolayers of a calix[4]resorcinarene with a nematic liquid crystal and their bilayered structuring. Chem. Lett. 3, 411–412 (1998)CrossRefGoogle Scholar
  25. 25.
    Yonetake, K., Nakayama, T., Ueta, M.: New liquid crystals based on calixarenes. J. Mater. Chem. 11, 761–767 (2001)CrossRefGoogle Scholar
  26. 26.
    Oh, S.K., Nakagawa, M., Ichimura, K.: Relationship between the ability to control liquid crystal alignment and wetting properties of calix[4]resorcinarene monolayers. J. Mater. Chem. 11, 1563–1569 (2001)CrossRefGoogle Scholar
  27. 27.
    Armaroli, N., Accorsi, G., Rio, Y., Ceroni, P., Vicinelli, V., Welter, R., Gu, T., Saddik, M., Holler, M.: Electronic properties of oligophenylenevinylene and oligophenylene ethynylene arrays constructed on the upper rim of a calix[4]arene core. New J. Chem. 28, 1537–1626 (2004)CrossRefGoogle Scholar
  28. 28.
    Lo, P.K., Chen, D., Meng, Q., Wong, M.S.: Highly ordered smectic phases from polar calix[4]arene derivatives. Chem. Mater. 18, 3824–3930 (2006)Google Scholar
  29. 29.
    Strobel, M., Tokarczyk, K., Taubert, A., Vebert, C., Heiney, P., Chami, M., Meier, W.: Self-assembly of amphiphilic calix[4]arenes in aqueous solution. Adv. Funct. Mater. 16, 252–259 (2006)CrossRefGoogle Scholar
  30. 30.
    Kohmoto, S., Someya, Y., Masu, H., Yamaguchi, K., Kishikawa, K.: Liquid crystal and crystal structure of octahomotetraoxacalix[4]arenes. J. Org. Chem. 71, 4509–4515 (2006)CrossRefGoogle Scholar
  31. 31.
    Zakharova, L.Y., Kudryashova, Y.R., Selivanova, N.M., Voronin, M.A., Ibragimova, A.R., Solovieva, S.E., Gubaidullin, A.T., Litvinov, A.I., Nizameev, I.R., Kadirov, M.K., Galyametdinov, Y.G., Antipin, I.S., Konovalov, A.I.: Novel membrane mimetic systems based on amphiphilic oxyethylated calix[4]arene: aggregative and liquid crystalline behavior. J. Membr. Sci. 364, 90–101 (2010)CrossRefGoogle Scholar
  32. 32.
    Patel, R.V., Panchal, J.G., Rana, V.A., Menon, S.K.: Liquid crystals based on calix[4]arene Schiff bases. J. Incl. Phenom. Macrocycl. Chem. 66, 285–295 (2010)CrossRefGoogle Scholar
  33. 33.
    Menon, S.K., Patel, R.K., Panchal, J.G., Mistry, B.R., Rana, V.A.: Dielectric study of novel liquid crystals based on calix[4]arene Schiff bases. Liq. Cryst. 38, 123–134 (2011)CrossRefGoogle Scholar
  34. 34.
    Sutariya, P.G., Pandya, A., Rana, V.A., Menon, S.K.: The influence of linking group in exterior point on mesogenic properties of the basket moulded molecules: calix[4]arene. Liq. Cryst. 40, 374–383 (2013)CrossRefGoogle Scholar
  35. 35.
    Sutariya, P.G., Modi, N.R., Pandya, A., Rana, V.A., Menon, S.K.: Synthesis, mesomorphism and dielectric behavior of novel basket shaped scaffolds constructed on lower rim azocalix[4]arenes. RSC Adv. 3, 4176–4180 (2013)CrossRefGoogle Scholar
  36. 36.
    Sergeyev, S., Pisula, W., Geerts, Y.H.: Discotic liquid crystals: a new generation of organic semiconductors. Chem. Soc. Rev. 36, 1902–1929 (2007)CrossRefGoogle Scholar
  37. 37.
    Kato, T., Mizoshita, N., Kishimoto, K.: Functional liquid-crystalline assemblies: self-organized soft materials. Angew. Chem. Int. Ed. 45, 38–68 (2006)CrossRefGoogle Scholar
  38. 38.
    Miao, J., Zhu, L.: Hydrogen bond-assisted supramolecular self-assembly of doubly discotic supermolecules based on porphyrin and triphenylene. Chem. Mater. 22, 197–206 (2010)CrossRefGoogle Scholar
  39. 39.
    Mekenna, M.D., Barbera, J., Marcos, M., Serrano, J.L.: Discotic liquid crystalline poly(propylene imine) dendrimers based on triphenylene. J. Am. Chem. Soc. 127, 619–625 (2005)CrossRefGoogle Scholar
  40. 40.
    Bisoyi, H.K., Kumar, S.: Carbon nanotubes in triphenylene and rufigallol-based room temperature monomeric and polymeric discotic liquid crystals. J. Mater. Chem. 18, 3032–3039 (2008)CrossRefGoogle Scholar
  41. 41.
    Li, J., He, Z., Gopee, H., Cammidge, A.N.: Synthesis of crown ether-linked discotic triphenylenes. Org. Lett. 12, 472–475 (2010)CrossRefGoogle Scholar
  42. 42.
    Kaller, M., Deck, C., Meister, A., Hause, G., Baro, A., Laschat, S.: Counterion effects on the columnar mesophases of triphenylene-substituted [18]crown-6 ethers: is flatter better? Chem. Eur. J. 16, 6326–6337 (2010)CrossRefGoogle Scholar
  43. 43.
    Yang, F., Guo, H., Xie, J., Lin, J.: Synthesis of calixarene-linked discotic triphenylene. Eur. J. Org. Chem. 26, 5141–5145 (2011)CrossRefGoogle Scholar
  44. 44.
    Yang, F., Xu, B., Guo, H., Xie, J.: Novel symmetrical triads of triphenylene-calix[4]arene-triphenylene. Tetrahedron Lett. 53, 1598–1602 (2012)CrossRefGoogle Scholar
  45. 45.
    Yang, F., Bai, X., Guo, H., Li, C.: Ion complexation-induced columnar liquid crystalline conversion of novel symmetrical triads of triphenylene-calix[4]arene-triphenylenes. Tetrahedron Lett. 54, 409–413 (2013)CrossRefGoogle Scholar
  46. 46.
    Hong, B., Yang, F., Guo, H., Jiao, Z.: Synthesis, complexation and mesomorphism of novel calixarene-linked discotic triphenylene based on click chemistry. Tetrahedron Lett. 55, 252–255 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.College of Chemistry and MaterialsFujian Normal UniversityFuzhouPeople’s Republic of China
  2. 2.Fujian Key Laboratory of Polymer MaterialsFuzhouPeople’s Republic of China
  3. 3.ECPM-CNRS-Université de StrasbourgStrasbourgFrance

Personalised recommendations