Selective complexation of alkali metal ions and nanotubular cyclopeptides: a DFT study

  • Alireza Najafi Chermahini
  • Mehdi Rezapour
  • Abbas Teimouri
Original Article


A density functional theory based on interaction of alkali metal cations (Li+, Na+, K+, Rb+ and Cs+) with cyclic peptides constructed from 3 or 4 alanine molecule (CyAla3 and CyAla4), has been investigated using mixed basis set (C, H, O, Li+, Na+ and K+ using 6-31+G(d), and the heavier cations: Rb+ and Cs+ using LANL2DZ). The minimum energy structures, binding energies, and various thermodynamic parameters of free ligands and their metal cations complexes have been determined with B3LYP and CAM-B3LYP functionals. The order of interaction energies were found to be Li> K> Na> Rb> Cs+ and Li> Na> K≫ Rb> Cs+, calculated at CAM-B3LYP level for the M/CyAla3 and M/CyAla4 complexes, respectively. Their selectivity trend shows that the highest cation selectivity for Li+ over other alkali metal ions has been achieved on the basis of thermodynamic analysis. The main types of driving force host–guest interactions are investigated, the electron-donating O offers lone pair electrons to the contacting LP* of alkali metal cations.


Nanotubular cyclic peptides Cation selectivity Host–guest interaction CAM-B3LYP 



We would like to acknowledge the Isfahan University of Technology for the financial support of this work.


  1. 1.
    Chen, G., Su, S., Liu, R.: Theoretical studies of monomer and dimer of cyclo[(−l-Phe1-d-Ala2−)n] and cyclo[(−l-Phe1-d-MeN-Ala2−)n] (n = 3–6). J. Phys. Chem. B 106(7), 1570–1575 (2002)CrossRefGoogle Scholar
  2. 2.
    Ghadiri, M.R., Granja, J.R., Buehler, L.K.: Artificial transmembrane ion channels from self-assembling peptide nanotubes. Nature 369(6478), 301–304 (1994)CrossRefGoogle Scholar
  3. 3.
    Ghadiri, M.R., Granja, J.R., Milligan, R.A., McRee, D.E., Khazanovich, N.: Self-assembling organic nanotubes based on a cyclic peptide architecture. Nature 366(6453), 324–327 (1993)CrossRefGoogle Scholar
  4. 4.
    Ghadiri, M.R., Kobayashi, K., Granja, J.R., Chadha, R.K., McRee, D.E.: The structural and thermodynamic basis for the formation of self-assembled peptide nanotubes. Angew. Chem. Int. Ed. Engl. 34(1), 93–95 (1995)CrossRefGoogle Scholar
  5. 5.
    Hartgerink, J.D., Granja, J.R., Milligan, R.A., Ghadiri, M.R.: Self-assembling peptide nanotubes. J. Am. Chem. Soc. 118(1), 43–50 (1996)CrossRefGoogle Scholar
  6. 6.
    Kobayashi, K., Granja, J.R., Ghadiri, M.R.: β-Sheet peptide architecture: measuring the relative stability of parallel vs. antiparallel β-sheets. Angew. Chem. Int. Ed. Engl. 34(1), 95–98 (1995)CrossRefGoogle Scholar
  7. 7.
    Poteau, R., Trinquier, G.: All-cis cyclic peptides. J. Am. Chem. Soc. 127(40), 13875–13889 (2005)CrossRefGoogle Scholar
  8. 8.
    Tan, H., Qu, W., Chen, G., Liu, R.: Theoretical investigation of the self-assembly of cyclo[(−β3-HGly)4−]. Chem. Phys. Lett. 369(5–6), 556–562 (2003)CrossRefGoogle Scholar
  9. 9.
    Teranishi, M., Okamoto, H., Takeda, K., Nomura, K.-i., Nakano, A., Kalia, R.K., Vashishta, P., Shimojo, F.: Molecular dynamical approach to the conformational transition in peptide nanorings and nanotubes. J. Phys. Chem. B 113(5), 1473–1484 (2009)CrossRefGoogle Scholar
  10. 10.
    Bagheri, M., Keller, S., Dathe, M.: Interaction of W-substituted analogs of cyclo-RRRWFW with bacterial lipopolysaccharides: the role of the aromatic cluster in antimicrobial activity. Antimicrob. Agents Chemother. 55(2), 788–797 (2011)CrossRefGoogle Scholar
  11. 11.
    Vollenbroich, D., Özel, M., Vater, J., Kamp, R.M., Pauli, G.: Mechanism of inactivation of enveloped viruses by the biosurfactant surfactin from Bacillus subtilis. Biologicals 25(3), 289–297 (1997)CrossRefGoogle Scholar
  12. 12.
    Kracht, M., Rokos, H., Ozel, M., Kowall, M., Pauli, G., Vater, J.: Antiviral and hemolytic activities of surfactin isoforms and their methyl ester derivatives. J. Antibiot. 52(7), 613–619 (1999)CrossRefGoogle Scholar
  13. 13.
    Tendulkar, S.R., Saikumari, Y.K., Patel, V., Raghotama, S., Munshi, T.K., Balaram, P., Chattoo, B.B.: Isolation, purification and characterization of an antifungal molecule produced by Bacillus licheniformis BC98, and its effect on phytopathogen Magnaporthe grisea. J. Appl. Microbiol. 103(6), 2331–2339 (2007)CrossRefGoogle Scholar
  14. 14.
    Weber, C., Wider, G., von Freyberg, B., Traber, R., Braun, W., Widmer, H., Wuthrich, K.: The NMR structure of cyclosporin A bound to cyclophilin in aqueous solution. Biochemistry 30(26), 6563–6574 (1991)CrossRefGoogle Scholar
  15. 15.
    Trevisan, G., Maldaner, G., Velloso, N.A., Sant’Anna Gda, S., Ilha, V., Velho Gewehr Cde, C., Rubin, M.A., Morel, A.F., Ferreira, J.: Antinociceptive effects of 14-membered cyclopeptide alkaloids. J. Nat. Prod. 72(4), 608–612 (2009)CrossRefGoogle Scholar
  16. 16.
    Gang, H.Z., Liu, J.F., Mu, B.Z.: Molecular dynamics simulation of surfactin derivatives at the decane/water interface at low surface coverage. J. Phys. Chem. B 114(8), 2728–2737 (2010)CrossRefGoogle Scholar
  17. 17.
    Banerjee, A., Yadav, A.: Self-assembling cyclic systems as drug carriers. Appl. Nanosci. 1–14 (2012). doi: 10.1007/s13204-012-0154-0
  18. 18.
    Liu, J., Fan, J., Tang, M., Zhou, W.: Molecular dynamics simulation for the structure of the water chain in a transmembrane peptide nanotube. J. Phys. Chem. A 114(6), 2376–2383 (2010)CrossRefGoogle Scholar
  19. 19.
    Jishi, R.A., Flores, R.M., Valderrama, M., Lou, L., Bragin, J.: Equilibrium geometry and properties of cyclo[(Gly-d-Ala)4] and {cyclo[(Gly-d-Ala)4]}2 from density functional theory. J. Phys. Chem. A 102(48), 9858–9862 (1998)CrossRefGoogle Scholar
  20. 20.
    Vijayaraj, R., Sundar Raman, S., Mahesh Kumar, R., Subramanian, V.: Studies on the structure and stability of cyclic peptide based nanotubes using oligomeric approach: a computational chemistry investigation. J. Phys. Chem. B 114(49), 16574–16583 (2010)CrossRefGoogle Scholar
  21. 21.
    Vijayaraj, R., Van Damme, S., Bultinck, P., Subramanian, V.: Structure and stability of cyclic peptide based nanotubes: a molecular dynamics study of the influence of amino acid composition. Phys. Chem. Chem. Phys. 14(43), 15135–15144 (2012)CrossRefGoogle Scholar
  22. 22.
    Żero, P., Pluciński, F., Mazurek, A.P.: Theoretical comparison of molecular properties of linear and cyclic glycine derived peptides and their phosphor analogues. J. Mol. Struct. (Theochem.) 915(1–3), 182–187 (2009)Google Scholar
  23. 23.
    Ali, S.M., Maity, D.K., De, S., Shenoi, M.R.K.: Ligands for selective metal ion extraction: a molecular modeling approach. Desalination 232(1–3), 181–190 (2008)CrossRefGoogle Scholar
  24. 24.
    Casanovas, J., Rodríguez-Ropero, F., Zanuy, D., Alemán, C.: Microscopic details of the sensing ability of 15-crown-5-ether functionalized poly(bithiophene). Polymer 51(18), 4267–4272 (2010)CrossRefGoogle Scholar
  25. 25.
    Hill, S.E., Feller, D.: Theoretical study of cation/ether complexes: 15-crown-5 and its alkali metal complexes. Int. J. Mass Spectrom. 201(1–3), 41–58 (2000)CrossRefGoogle Scholar
  26. 26.
    Hong, J., Cho, S., Ham, S.: Metal ion shuttling mechanism through thiacalix[4]crown: a computational study. Tetrahedron Lett. 53(15), 2009–2012 (2012)CrossRefGoogle Scholar
  27. 27.
    Hou, H., Zeng, X., Liu, X.: DFT study of a series of crown-4 ethers and their selectivity trend for alkali metal cations: Li+ and Na+. J. Mol. Model. 15(2), 105–111 (2009)CrossRefGoogle Scholar
  28. 28.
    Becke, A.D.: Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98(7), 5648–5652 (1993)CrossRefGoogle Scholar
  29. 29.
    Kamiya, M., Tsuneda, T., Hirao, K.: A density functional study of van der Waals interactions. J. Chem. Phys. 117(13), 6010–6015 (2002)CrossRefGoogle Scholar
  30. 30.
    Lee, C., Yang, W., Parr, R.G.: Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37(2), 785–789 (1988)CrossRefGoogle Scholar
  31. 31.
    Stephens, P.J., Devlin, F.J., Chabalowski, C.F., Frisch, M.J.: Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 98(45), 11623–11627 (1994)CrossRefGoogle Scholar
  32. 32.
    Yanai, T., Tew, D.P., Handy, N.C.: A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 393(1–3), 51–57 (2004)CrossRefGoogle Scholar
  33. 33.
    Frisch, M.J.T., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery Jr., J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, Ö., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian 09, Revision A.02. Gaussian Inc, Wallingford (2009)Google Scholar
  34. 34.
    Foster, J.P., Weinhold, F.: Natural hybrid orbitals. J. Am. Chem. Soc. 102(24), 7211–7218 (1980)CrossRefGoogle Scholar
  35. 35.
    Reed, A.E., Curtiss, L.A., Weinhold, F.: Intermolecular interactions from a natural bond orbital, donor–acceptor viewpoint. Chem. Rev. 88(6), 899–926 (1988)CrossRefGoogle Scholar
  36. 36.
    Kubik, S.: Large increase in cation binding affinity of artificial cyclopeptide receptors by an allosteric effect. J. Am. Chem. Soc. 121(25), 5846–5855 (1999)CrossRefGoogle Scholar
  37. 37.
    De, S., Boda, A., Ali, S.M.: Preferential interaction of charged alkali metal ions (guest) within a narrow cavity of cyclic crown ethers (neutral host): a quantum chemical investigation. J. Mol. Struct. (Theochem.) 941(1–3), 90–101 (2010)CrossRefGoogle Scholar
  38. 38.
    Kubik, S., Goddard, R.: Intramolecular conformational control in a cyclic peptide composed of alternating -proline and substituted 3-aminobenzoic acid subunits. Chem. Commun. 0(7), 633–634 (2000)CrossRefGoogle Scholar
  39. 39.
    Praveena, G., Kolandaivel, P.: Interaction of metal ions with cyclo[(1R,3S)-γ-Acc-Gly]3 hexapeptide—a theoretical study. J. Mol. Struct. (Theochem.) 900(1–3), 96–102 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Alireza Najafi Chermahini
    • 1
  • Mehdi Rezapour
    • 1
  • Abbas Teimouri
    • 2
  1. 1.Department of ChemistryIsfahan University of TechnologyIsfahanIslamic Republic of Iran
  2. 2.Chemistry DepartmentPayame Noor UniversityTehranIslamic Republic of Iran

Personalised recommendations