Bis-calix[4]arene-based podants using the bridge position as a constructive mode of subunit connection

  • Conrad Fischer
  • Edwin Weber
Original Article


Synthetic pathways for a bridge type connection of two calixarenes by a flexible alkylene chain or a more rigid bistriazole modified connection element of different length are presented. NMR measurements as well as MM calculations point to rather flexible conjugates showing suitable requirements for a potential formation of inclusion complexes with neutral and anionic guests of appropriate size.

Graphical Abstract


Calixarene Bridge connection Methylene bridge Click reaction MM calculation 



ADDE (Cluster of Excellence “Structure Design of Novel High-Performance Materials via Atomic Design and Defect Engineering”) is acknowledged for founding of the modelling software.

Supplementary material

10847_2013_338_MOESM1_ESM.doc (17.9 mb)
Supplementary material 1 (DOC 18299 kb)


  1. 1.
    Gutsche, C.D.: Calixarenes: an introduction (monographs in supramolecular chemistry). Royal Society of Cambridge, Cambridge (2008)Google Scholar
  2. 2.
    Scully, P.A., Hamilton, T.M., Bennett, J.L.: Synthesis of 2-alkyl- and 2-carboxy-p-tert-butylcalix[4]arenes via the lithiation of tetramethoxy-p-tert-butylcalix[4]arene. Org. Lett. 3, 2741–2744 (2001)CrossRefGoogle Scholar
  3. 3.
    Gruber, T., Gruner, M., Fischer, C., Seichter, W., Bombicz, P., Weber, E.: Conforma-tional behaviour and first crystal structures of a calix[2]arene featuring a laterally posi-tioned carboxylic acid function in unsolvated and solvent-complexed forms. New J. Chem. 34, 250–259 (2010)CrossRefGoogle Scholar
  4. 4.
    Fischer, C., Gruber, T., Seichter, W., Weber, E.: Bridge-substi-tuted calix[4]arenes: syntheses, conformations and application. Org. Biomol. Chem. 9, 4347–4352 (2011)CrossRefGoogle Scholar
  5. 5.
    Baklouti, L., Vicens, J., Harrowfield, J.: Calixarenes in the nanoworld. Springer, Dordrecht (2007)Google Scholar
  6. 6.
    Thulasi, S., Savithri, A., Varma, R.L.: Calix[20bis(spirodienone) as a versatile synthon for upper rim alkoxylation of calixarenes and synthesis of novel triazole-based bis[calixarene] by ‘CuAAC’ chemistry. Supramol. Chem. 23, 501–508 (2011)CrossRefGoogle Scholar
  7. 7.
    Morales-Sanfrutos, J., Ortega-Munoz, M., Lopez-Jaramillo, J., Hernandez-Mateo, F., Santoyo-Gonzalez, F.: Synthesis of calixarene-based cavitands and nanotubes by click chemistry. J. Org. Chem. 73, 7768–7771 (2008)CrossRefGoogle Scholar
  8. 8.
    Harada, T., Rudziński, J.M., Shinkai, S.J.: Relative stabilities of tetramethoxycalix[4]-arenes: combined NMR spectroscopy and molecular mechanics studies. Chem. Soc. Perkin Trans. 2, 2109–2115 (1992)CrossRefGoogle Scholar
  9. 9.
    Hertel, M.P., Behrle, A.C., Williams, S.A., Schmidt, J.A.R., Fantini, J.L.: Synthesis of amine, halide, and pyridinium terminated 2-alkyl-p-tert-butylcalix[4]arenes. Tetrahedron 65, 8657–8667 (2009)CrossRefGoogle Scholar
  10. 10.
    Hardman, M.J., Thomas, A.M., Carroll, L.T., Williams, L.C., Parkin, S., Fantini, J.L.: Synthesis and ‘click’ cycloaddition reactions of tetramethoxy- and tetrapropoxy-2-(ω-azidoalkyl)calix[4]arenes. Tetrahedron 67, 7027–7034 (2011)CrossRefGoogle Scholar
  11. 11.
    Ipaktschi, J., Hosseinzadeh, R., Schlaf, P., Dreiseidler, E., Goddard, R.: Self-organization of molecules by covalent bonds. Selective tetramerization of a para-quinodimethane. Helv. Chim. Acta 81, 1821–1834 (1998)CrossRefGoogle Scholar
  12. 12.
    Estrada, L.A., Neckers, D.C.: Synthesis and photophysics of ambipolar fluoren-9-ylidene malononitrile derivatives. J. Org. Chem. 74, 8484–8487 (2009)CrossRefGoogle Scholar
  13. 13.
    Fischer, C., Seichter, W., Weber, E.: Structural conditions required for the bridge lithiation and substitution of a basic calix[4]arene. Beilstein J. Org. Chem. 7, 1602–1608 (2011)CrossRefGoogle Scholar
  14. 14.
    Fischer, C., Lin, G., Seichter, W., Weber, E.: Bridge-disubstituted calix[4]arenes obtained via new preparative route. Synthesis and structural study. Tetrahedron 67, 5656–5662 (2011)CrossRefGoogle Scholar
  15. 15.
    Fischer, C., Bombicz, P., Seichter, W., Katzsch, F., Weber, E.: Bridge-disubstituted calix[4]-arenes in the rare 1,2-alternate conformation: control of the inclusion behaviour depending on the bridge substituents. Cryst. Growth Des. 12, 2445–2454 (2012)CrossRefGoogle Scholar
  16. 16.
    Fischer, C., Bombicz, P., Seichter, W., Weber, E.: Fine-tuning of packing architecture: symmetrically bridge-disubstituted tetramethoxycalix[4]arenes. Struct. Chem. 24, 535–541 (2012)CrossRefGoogle Scholar
  17. 17.
    Huisgen, R.: 1,3-Dipolar cycloadditions. Past and future. Angew. Chem. Int. Ed. 2, 565–598 (1963)CrossRefGoogle Scholar
  18. 18.
    Huisgen, R.: Kinetics and mechanism of 1,3-dipolar cycloadditions. Angew. Chem. Int. Ed. 2, 633–645 (1963)CrossRefGoogle Scholar
  19. 19.
    Yamabe, S., Tsuchida, N., Yamazaki, S.: A FMO-controlled reaction path in the Benzil-Benzilic acid rearrangement. J. Org. Chem. 71, 1777–1783 (2006)CrossRefGoogle Scholar
  20. 20.
    Nishio, M., Umezawa, Y., Honda, K., Tsuboyama, S., Suezawa, H.: CH/π hydrogen bonds in organic and organometallic chemistry. CrystEngComm 11, 1757–1788 (2009)CrossRefGoogle Scholar
  21. 21.
    Fischer, C., Gruber, T., Seichter, W., Schindler, D., Weber, E.: 5,11,17,23-Tetra-tert-butyl-25,26,27,28-tetramethoxycalix[4]arene dichloromethane hemisolvate. Acta Crystallogr. E64, o673 (2008)Google Scholar
  22. 22.
    Katzsch, F., Eißmann, D., Weber, E.: A comparison of X-ray crystal structures including methyl 3,5-bis(hydroxymethyl)benzoate, its phenylethynyl extended derivative in polymorphous forms and the corresponding carboxylic acids. Struct. Chem. 23, 245–255 (2012)CrossRefGoogle Scholar
  23. 23.
    Li, Y., Flood, A.H.: Strong, size-selective, and electronically tunable C–H···halide binding with steric control over aggregation from synthetically modular, shape-persistent [34]triazolophanes. J. Am. Chem. Soc. 130, 12111–12122 (2008)CrossRefGoogle Scholar
  24. 24.
    Fischer, C., Stapf, M., Seichter, W., Weber, E.: Fluorescent chemosensors based on a new type of lower rim dansylated and bridge substituted calix[4]arenes. Supramol Chem. doi: 10.1080/10610278.2013.783918 (2013)

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Institut für Organische ChemieTU Bergakademie FreibergFreibergGermany

Personalised recommendations