Skip to main content
Log in

Bis-calix[4]arene-based podants using the bridge position as a constructive mode of subunit connection

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Synthetic pathways for a bridge type connection of two calixarenes by a flexible alkylene chain or a more rigid bistriazole modified connection element of different length are presented. NMR measurements as well as MM calculations point to rather flexible conjugates showing suitable requirements for a potential formation of inclusion complexes with neutral and anionic guests of appropriate size.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Scheme 3
Scheme 4
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Calculated by means of combinational analysis, 10 conformations (n) of 2 individual chalices (c): [(n + c − 1)!/(n − 1!) ⋅c!].

  2. First NMR-titrations of 17 with TBAX (X = F, Cl, Br, I) show lowfield shifts of aromatic triazole protons indicative for halide ion complexation. Further studies are owing.

References

  1. Gutsche, C.D.: Calixarenes: an introduction (monographs in supramolecular chemistry). Royal Society of Cambridge, Cambridge (2008)

    Google Scholar 

  2. Scully, P.A., Hamilton, T.M., Bennett, J.L.: Synthesis of 2-alkyl- and 2-carboxy-p-tert-butylcalix[4]arenes via the lithiation of tetramethoxy-p-tert-butylcalix[4]arene. Org. Lett. 3, 2741–2744 (2001)

    Article  CAS  Google Scholar 

  3. Gruber, T., Gruner, M., Fischer, C., Seichter, W., Bombicz, P., Weber, E.: Conforma-tional behaviour and first crystal structures of a calix[2]arene featuring a laterally posi-tioned carboxylic acid function in unsolvated and solvent-complexed forms. New J. Chem. 34, 250–259 (2010)

    Article  CAS  Google Scholar 

  4. Fischer, C., Gruber, T., Seichter, W., Weber, E.: Bridge-substi-tuted calix[4]arenes: syntheses, conformations and application. Org. Biomol. Chem. 9, 4347–4352 (2011)

    Article  CAS  Google Scholar 

  5. Baklouti, L., Vicens, J., Harrowfield, J.: Calixarenes in the nanoworld. Springer, Dordrecht (2007)

    Google Scholar 

  6. Thulasi, S., Savithri, A., Varma, R.L.: Calix[20bis(spirodienone) as a versatile synthon for upper rim alkoxylation of calixarenes and synthesis of novel triazole-based bis[calixarene] by ‘CuAAC’ chemistry. Supramol. Chem. 23, 501–508 (2011)

    Article  CAS  Google Scholar 

  7. Morales-Sanfrutos, J., Ortega-Munoz, M., Lopez-Jaramillo, J., Hernandez-Mateo, F., Santoyo-Gonzalez, F.: Synthesis of calixarene-based cavitands and nanotubes by click chemistry. J. Org. Chem. 73, 7768–7771 (2008)

    Article  CAS  Google Scholar 

  8. Harada, T., Rudziński, J.M., Shinkai, S.J.: Relative stabilities of tetramethoxycalix[4]-arenes: combined NMR spectroscopy and molecular mechanics studies. Chem. Soc. Perkin Trans. 2, 2109–2115 (1992)

    Article  Google Scholar 

  9. Hertel, M.P., Behrle, A.C., Williams, S.A., Schmidt, J.A.R., Fantini, J.L.: Synthesis of amine, halide, and pyridinium terminated 2-alkyl-p-tert-butylcalix[4]arenes. Tetrahedron 65, 8657–8667 (2009)

    Article  CAS  Google Scholar 

  10. Hardman, M.J., Thomas, A.M., Carroll, L.T., Williams, L.C., Parkin, S., Fantini, J.L.: Synthesis and ‘click’ cycloaddition reactions of tetramethoxy- and tetrapropoxy-2-(ω-azidoalkyl)calix[4]arenes. Tetrahedron 67, 7027–7034 (2011)

    Article  CAS  Google Scholar 

  11. Ipaktschi, J., Hosseinzadeh, R., Schlaf, P., Dreiseidler, E., Goddard, R.: Self-organization of molecules by covalent bonds. Selective tetramerization of a para-quinodimethane. Helv. Chim. Acta 81, 1821–1834 (1998)

    Article  CAS  Google Scholar 

  12. Estrada, L.A., Neckers, D.C.: Synthesis and photophysics of ambipolar fluoren-9-ylidene malononitrile derivatives. J. Org. Chem. 74, 8484–8487 (2009)

    Article  CAS  Google Scholar 

  13. Fischer, C., Seichter, W., Weber, E.: Structural conditions required for the bridge lithiation and substitution of a basic calix[4]arene. Beilstein J. Org. Chem. 7, 1602–1608 (2011)

    Article  CAS  Google Scholar 

  14. Fischer, C., Lin, G., Seichter, W., Weber, E.: Bridge-disubstituted calix[4]arenes obtained via new preparative route. Synthesis and structural study. Tetrahedron 67, 5656–5662 (2011)

    Article  CAS  Google Scholar 

  15. Fischer, C., Bombicz, P., Seichter, W., Katzsch, F., Weber, E.: Bridge-disubstituted calix[4]-arenes in the rare 1,2-alternate conformation: control of the inclusion behaviour depending on the bridge substituents. Cryst. Growth Des. 12, 2445–2454 (2012)

    Article  CAS  Google Scholar 

  16. Fischer, C., Bombicz, P., Seichter, W., Weber, E.: Fine-tuning of packing architecture: symmetrically bridge-disubstituted tetramethoxycalix[4]arenes. Struct. Chem. 24, 535–541 (2012)

    Article  Google Scholar 

  17. Huisgen, R.: 1,3-Dipolar cycloadditions. Past and future. Angew. Chem. Int. Ed. 2, 565–598 (1963)

    Article  Google Scholar 

  18. Huisgen, R.: Kinetics and mechanism of 1,3-dipolar cycloadditions. Angew. Chem. Int. Ed. 2, 633–645 (1963)

    Article  Google Scholar 

  19. Yamabe, S., Tsuchida, N., Yamazaki, S.: A FMO-controlled reaction path in the Benzil-Benzilic acid rearrangement. J. Org. Chem. 71, 1777–1783 (2006)

    Article  CAS  Google Scholar 

  20. Nishio, M., Umezawa, Y., Honda, K., Tsuboyama, S., Suezawa, H.: CH/π hydrogen bonds in organic and organometallic chemistry. CrystEngComm 11, 1757–1788 (2009)

    Article  CAS  Google Scholar 

  21. Fischer, C., Gruber, T., Seichter, W., Schindler, D., Weber, E.: 5,11,17,23-Tetra-tert-butyl-25,26,27,28-tetramethoxycalix[4]arene dichloromethane hemisolvate. Acta Crystallogr. E64, o673 (2008)

    Google Scholar 

  22. Katzsch, F., Eißmann, D., Weber, E.: A comparison of X-ray crystal structures including methyl 3,5-bis(hydroxymethyl)benzoate, its phenylethynyl extended derivative in polymorphous forms and the corresponding carboxylic acids. Struct. Chem. 23, 245–255 (2012)

    Article  CAS  Google Scholar 

  23. Li, Y., Flood, A.H.: Strong, size-selective, and electronically tunable C–H···halide binding with steric control over aggregation from synthetically modular, shape-persistent [34]triazolophanes. J. Am. Chem. Soc. 130, 12111–12122 (2008)

    Article  CAS  Google Scholar 

  24. Fischer, C., Stapf, M., Seichter, W., Weber, E.: Fluorescent chemosensors based on a new type of lower rim dansylated and bridge substituted calix[4]arenes. Supramol Chem. doi:10.1080/10610278.2013.783918 (2013)

Download references

Acknowledgments

ADDE (Cluster of Excellence “Structure Design of Novel High-Performance Materials via Atomic Design and Defect Engineering”) is acknowledged for founding of the modelling software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Conrad Fischer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 18299 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fischer, C., Weber, E. Bis-calix[4]arene-based podants using the bridge position as a constructive mode of subunit connection. J Incl Phenom Macrocycl Chem 79, 151–160 (2014). https://doi.org/10.1007/s10847-013-0338-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-013-0338-6

Keywords

Navigation