Supramolecular compounds constructed from Keggin anions and metal–organic complex cations of 3-aminopyrazine-2-carboxylic acid

  • Wei Dong
  • Feng Yao
  • Ya-Guang Chen
  • Qun Tang
Original Article


Three new supramolecular compounds based on Keggin-type polyoxometalate (POM) and transition metal complexes, [M(Hapca)2(H2O)2]2[SiW12O40]·nH2O, (M = NiII(1), ZnII(2), n = 12; CoII (3), n = 15; Hapca = 3-aminopyrazine-2-carboxylic acid), have been synthesized in aqueous solution and characterized by single-crystal X-ray diffraction, elemental analysis, TG analyses, IR and fluorescence spectroscopy. The X-ray structrual analysis reveals that three compounds are isostructural with a P21/c space group. [M(Hapca)2(H2O)2] 2 4+ are linked together via O···N hydrogen-bonding interaction to give birth to 2D layer with rectangle grids. Anions [SiW12O40]4− are located in the cavities and link the 2D layers into 3D supramolecular architecture via hydrogen bonds. The compounds represent the first examples of self-assembly of 2D metal–Hapca complex supramolecular “host” networks formed by hydrogen bonding interactions and “guest” polyoxoanion species. In addition, solid-state luminescence properties of compounds 2 and 3 have been studied at room temperature.


Polyoxometalates 3-aminopyrazine-2-carboxylic acid Supramolecular compounds Fluorescence spectroscopy 



This work was supported by the Natural Science Foundation of Jilin Province (No. 201115002).

Supplementary material

10847_2013_310_MOESM1_ESM.doc (229 kb)
Supplementary material Crystallographic data (excluding structure factors) for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK. Copies of the data can be obtained free of charge on quoting the depository numbers CCDC-845668, 870787 and 710214. (Tel: +44 (0)1223-762-911; E-Mail:, Supporting information of Table S1-S3 is included. (DOC 229 kb)


  1. 1.
    Pope, M.T., Müller, A. (eds.): Polyoxometalates: From Platonic Solids to Anti-Retroviral Activity. Kluwer Academic Publishers, Dordrecht (1994)Google Scholar
  2. 2.
    Pope, M.T.: Heteropoly and Isopoly Oxometalates. Springer, Berlin (1983)CrossRefGoogle Scholar
  3. 3.
    Hill, C.L.: Introduction: polyoxometalates-multicomponent molecular vehicles to probe fundamental issues and practical problems. Chem. Rev. 98, 1–2 (1998)CrossRefGoogle Scholar
  4. 4.
    Pope, M.T., Müller, A. (eds.): Polyoxometalate Chemistry: From Topology Via Self-Assembly to Applications. Kluwer, Dordrecht (2001)Google Scholar
  5. 5.
    Yamase, T., Pope, M.T. (eds.): Polyoxometalate Chemistry for Nano-Composite Design. Kluwer, Dordrecht (2002)Google Scholar
  6. 6.
    Long, D.L., Burkholder, E., Cronin, L.: Polyoxometalate clusters, nanostructures and materials: from self assembly to designer materials and devices. Chem. Soc. Rev. 36, 105–121 (2007)CrossRefGoogle Scholar
  7. 7.
    Zhang, Z.M., Li, Y.G., Wang, E.B., Wang, X.L., Qin, C., An, H.Y.: Synthesis, characterization, and crystal structures of two novel high-nuclear nickel-substituted dimeric polyoxometalates. Inorg. Chem. 45, 4313–4315 (2006)CrossRefGoogle Scholar
  8. 8.
    Chen, W.L., Li, Y.G., Wang, Y.H., Wang, E.B., Su, Z.M.: Building block approach to nanostructures: step-by-step assembly of large lanthanide-containing polytungstoarsenate aggregates. Dalton Trans. 4293–4301 (2007)Google Scholar
  9. 9.
    Ritchie, C., Ferguson, A., Nojiri, H., Miras, H.N., Song, Y.F., Long, D.L., Burkholder, E., Murrie, M., Kögerlerb, P., Brechin, E.K., Cronin, L.: Polyoxometalate-mediated self-assembly of single-molecule magnets: {[XW9O34]2[Mn4IIIMn2IIO4(H2O)4]}12−. Angew. Chem. Int. Ed. 47, 5609–5612 (2008)CrossRefGoogle Scholar
  10. 10.
    Pradeep, C.P., Long, D.L., Kögerlerb, P., Cronin, L.: Controlled assembly and solution observation of a 2.6 nm polyoxometalate ‘super’ tetrahedron cluster: [KFe12(OH)18(α-1,2,3-P2W15O56)4]29−. Chem. Commun. 41, 4254–4256 (2007)CrossRefGoogle Scholar
  11. 11.
    Dang, D.B., Zheng, Y.N., Bai, Y., Guo, X.Y., Ma, P.T., Niu, J.Y.: Assembly of polyoxometalate-based metal–organic frameworks with silver(I)-schiff base coordination polymeric chains as building blocks. Cryst. Growth Des. 12, 3856–3867 (2012)CrossRefGoogle Scholar
  12. 12.
    Ren, Y.H., Du, C.B., Feng, S.J., Wang, C.L., Kong, Z.P., Yue, B., He, H.Y.: Three POM-based coordination polymers: hydrothermal synthesis, characterization, and catalytic activity in epoxidation of styrene. Cryst. Eng. Comm. 13, 7143–7148 (2011)CrossRefGoogle Scholar
  13. 13.
    Wang, X.L., Wang, Y.F., Liu, G.C., Tian, A.X., Zhang, J.W., Lin, H.Y.: Novel inorganic–organic hybrids constructed from multinuclear copper cluster and Keggin polyanions: from 1D wave-like chain to 2D network. Dalton Trans. 40, 9299–9305 (2011)CrossRefGoogle Scholar
  14. 14.
    Absillis, G., Parac-Vogt, T.N.: Peptide bond hydrolysis catalyzed by the Wells–Dawson Zr(α2-P2W17O61)2 polyoxometalate. Inorg. Chem. 51, 9902–9910 (2012)CrossRefGoogle Scholar
  15. 15.
    Zhang, C.D., Liu, S.X., Sun, C.Y., Ma, F.J., Su, Z.M.: Assembly of organic–inorganic hybrid materials based on Dawson-type polyoxometalate and multinuclear copper–phen complexes with unique magnetic properties. Cryst. Growth Des. 9, 3655–3660 (2009)CrossRefGoogle Scholar
  16. 16.
    Sang, Y.M., Yan, L.K., Wang, J.P., Su, Z.M.: TDDFT studies on the electronic structures and chiroptical properties of mono-tin-substituted Wells–Dawson polyoxotungstates. J. Phys. Chem. A 116, 4152–4158 (2012)CrossRefGoogle Scholar
  17. 17.
    An, H.Y., Liu, X., Chen, H., Han, Z.B., Zhang, H., Chen, Z.F.: Assembling Anderson-type polyoxometalates with manganese(II) in the presence of pyridylacrylic acid ligands: a 2D layer and two polymorphs. Cryst. Eng. Comm. 13, 5384–5393 (2011)CrossRefGoogle Scholar
  18. 18.
    Wu, Q., Chen, W.L., Liu, D., Liang, C., Li, Y.G., Lin, S.W., Wang, E.B.: New class of organic–inorganic hybrid aggregates based on polyoxometalates and metal–schiff-base. Dalton Trans. 40, 56–61 (2011)CrossRefGoogle Scholar
  19. 19.
    Ito, T., Yashiro, H., Yamase, T.: Regular two-dimensional molecular array of photoluminescent Anderson-type polyoxometalate constructed by Langmuir-Blodgett technique. Langmuir 22, 2806–2810 (2006)CrossRefGoogle Scholar
  20. 20.
    Yu, R.M., Kuang, X.F., Wu, X.Y., Lu, C.Z., Donahue, J.P.: Stabilization and immobilization of polyoxometalates in porous coordination polymers through host–guest interactions. Coord. Chem. Rev. 253, 2872–2890 (2009)CrossRefGoogle Scholar
  21. 21.
    Sun, C.Y., Liu, S.X., Liang, D.D., Shao, K.Z., Ren, Y.H., Su, Z.M.: Highly stable crystalline catalysts based on a microporous metal–organic framework and polyoxometalates. J. Am. Chem. Soc. 131, 1883–1888 (2009)CrossRefGoogle Scholar
  22. 22.
    Chen, B.L., Ockwig, N.W., Millward, A.R., Contreras, D.S., Yaghi, O.M.: High H2 adsorption in a microporous metal–organic framework with open metal sites. Angew. Chem. Int. Ed. 44, 4745–4749 (2005)CrossRefGoogle Scholar
  23. 23.
    Chen, B.L., Liang, C.D., Yang, J., Contreras, D.S., Clancy, Y.L., Lobkovsky, E.B., Yaghi, O.M., Dai, S.: A microporous metal–organic framework for gas-chromatographic separation of alkanes. Angew. Chem. Int. Ed. 45, 1390–1393 (2006)CrossRefGoogle Scholar
  24. 24.
    Alkordi, M.H., Liu, Y.L., Larsen, R.W., Eubank, J.F., Eddaoudi, M.: Zeolite-like metal–organic frameworks as platforms for applications: on metalloporphyrin-based catalysts. J. Am. Chem. Soc. 130, 12639–12641 (2008)CrossRefGoogle Scholar
  25. 25.
    Horcajada, P., Serre, C., Vallet-Regí, M., Sebban, M., Taulelle, F., Férey, G.: Metal–organic frameworks as efficient materials for drug delivery. Angew. Chem. Int. Ed. 45, 5974–5978 (2006)CrossRefGoogle Scholar
  26. 26.
    Das, A., Scherer, T., Maji, S., Mondal, T.K., Mobin, S.M., Urbanos, F.A., Jimenez-Aparicio, R., Kaim, W., Lahiri, G.K.: Reductive approach to mixed valency (n = 1−) in the pyrazine ligand-bridged [(acac)2Ru(μ-L2–)Ru(acac)2]n (L2– = 2,5-Pyrazine-dicarboxylate) through experiment and theory. Inorg. Chem. 50, 7040–7049 (2011)CrossRefGoogle Scholar
  27. 27.
    Sun, D., Hao, H.J., Liu, F.J., Su, H.F., Huang, R.B., Zheng, L.S.: Syntheses, crystal structures and photoluminescent properties of two novel Ag(I) coordination polymers with benzoguanamine and pyrazine-carboxylate ligands: From 1D helix to 1D → 2D interdigitation. Cryst Eng Comm. 14, 480–487 (2012)CrossRefGoogle Scholar
  28. 28.
    Deng, Z.P., Kang, W., Huo, L.H., Zhao, H., Gao, S.: Rare-earth organic frameworks involving three types of architecture tuned by the lanthanide contraction effect: hydrothermal syntheses, structures and luminescence. Dalton Trans. 39, 6276–6284 (2010)CrossRefGoogle Scholar
  29. 29.
    Reza, T., Vahid, A., Reza, K.H.: Supramolecular architecture from a sodium coordination polymer with a 3D Net containing 3-Aminopyrazine-2-carboxylic acid (APZC): synthesis, characterization and crystal structure of [Na2(APZC)2(μ-H2O)23-H2O)]n. Chin. J. Chem. 26, 500–504 (2008)CrossRefGoogle Scholar
  30. 30.
    Dobson, A.J., Gerkin, R.E.: 3-Aminopyrazine-2-carboxylic Acid. Acta Cryst. C52, 1512–1514 (1996)Google Scholar
  31. 31.
    Rocchiccioli-Deltcheff, C., Fournier, M., Franck, R., Thouvenot, R.: Vibrationalinvestigations of polyoxometalates. 2. Evidence for anion–anion interactions in molybdenum(VI) and tungsten(VI) compounds related to the Keggin structure. Inorg. Chem. 22, 207–216 (1983)CrossRefGoogle Scholar
  32. 32.
    Sheldrick, G.M.: SHELXS-97, Program for Crystal Structure Solution. University of Göttingen, Germany (1997)Google Scholar
  33. 33.
    Sheldrick, G.M.: SHELXL-97, Program for Crystal Structure Refinement. University of Göttingen, Germany (1997)Google Scholar
  34. 34.
    Gomez-Garcia, C.J., Gimenez-Saiz, C., Triki, S., Coronado, E., Magueres, P.L., Ouahab, L., Ducasse, L., Sourisseau, C., Delhaes, P.: Coexistence of magnetic and delocalized electrons in hybrid molecular materials. The series of organic-inorganic radical salts (BEDT-TTF)8[XW12O40](solv)n (X = 2(H+), BIII, SiIV, CuII, CoII, and FeIII; solv = H2O, CH3CN). Inorg. Chem. 34, 4139–4151 (1995)CrossRefGoogle Scholar
  35. 35.
    Evans Jr., H.T., Popev, M.T.: Reinterpretation of five recent crystal structures of heteropoly and isopoly complexes: divanadodecamolybdophosphate, trivanadoenneamolybdophosphate, “.gamma.-dodecatungstophosphate”, the dodecamolybdate-dodecamolybdomolybdate blue complex, and dihydrogen decavanadate. Inorg. Chem. 23, 501–504 (1984)CrossRefGoogle Scholar
  36. 36.
    Yuan, M., Li, Y.G., Wang, E.B., Lu, Y., Hu, C.W., Hu, N.H., Jia, H.Q.: Hydrothermalsynthesis and crystal structure of a hybrid material based on [Co4(phen)8(H2O)2(HPO3)2]4+ and a highly reduced polyoxoanion. J. Chem. Soc., Dalton Trans. 14, 2916–2920 (2002)CrossRefGoogle Scholar
  37. 37.
    Deacon, G.B., Philips, R.J.: Relationships between the carbon-oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination. Coord. Chem. Rev. 33, 227–250 (1980)CrossRefGoogle Scholar
  38. 38.
    Nakamoto, K.: Infrared Spectra and Roman spectra of Inorganic and Coordina-tion Compound. Wiley, New York (1986)Google Scholar
  39. 39.
    Thouvenot, R., Fournier, M., Franck, R., Rocchiccioli-Deltcheff, C.: Vibrational investigations of polyoxometalates. 3. Isomerism in molybdenum(VI) and tungsten(VI) compounds related to the Keggin structure. Inorg. Chem. 23, 598–605 (1984)CrossRefGoogle Scholar
  40. 40.
    Zhang, L.Y., Liu, G.F., Zheng, S.L., Ye, B.H., Zhang, X.M., Chen, X.M.: Helical ribbons of cadmium(ii) and zinc(II) dicarboxylates with bipyridyl-like chelates–syntheses, crystal structures and photoluminescence. Eur. J. Inorg. Chem. 16, 2965–2971 (2003)CrossRefGoogle Scholar
  41. 41.
    Zhang, C.J., Pang, H.J., Tang, Q., Wang, H.Y., Chen, Y.G.: Three 3D octamolybdate-based hybrids with 1D–3D CuI/CuII-bis(triazole) motifs: influence of the amount of Et3N. New J. Chem. 35, 190–196 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Key Laboratory of Polyoxometalate Science of Ministry of Education, College of ChemistryNortheast Normal UniversityChangchunPeople’s Republic of China

Personalised recommendations