Advertisement

Spectroscopic and physico-chemical characterization of Ir(I) and Ru(III) complexes of 32-membered unsymmetrical dinucleating macrocyclic ligand

  • Mohammad Mansoob Khan
Original Article

Abstract

Reactions of the macrocyclic ligand [L·2HClO4] with the reactants [Ir(CO)(Ph3P)2Cl] and [RuCl3(AsPh3)2CH3OH], produces bimetallic complexes with the stoichiometries [Ir2L(Ph3P)2Cl(ClO4)] (I) and [Ru2LCl4(ClO4)2] (II), respectively. Physico-chemical and spectroscopic data of the complexes confirms the encapsulation of two metal ions in the macrocyclic cavities via coordination through nitrogen atoms of the unsymmetrical aza groups, which results in homo-dinuclear macrocyclic complexes. The macrocyclic ligand has accommodated both the lower, Ir(I), and higher, Ru(III), oxidation states of metal ions, which shows the flexible nature and capability of macrocycle to form stable complexes. The mode of bonding and geometry of the complexes have been established on the basis of FT-IR, NMR, ligand field spectral, magnetic susceptibility and conductivity measurements. The thermodynamic first ionic association constants (K1), corresponding free energy change (ΔG) and other related parameters from conductometric studies using the Fuoss and Edelson method of complexes in DMSO have been determined and discussed.

Keywords

32-membered Unsymmetrical Dinucleating Macrocyclic ligand Ir(I) complex Ru(III) complex 

Notes

Acknowledgments

Author is thankful to Prof. Z. A. Siddiqi, Department of Chemistry, Aligarh Muslim University, Aligarh, India, for fruitful discussion.

References

  1. 1.
    Bencini, A., Bianchi, A., Dapporto, B., Gracia-Espana, E., Micheloni, M., Paoletti, P. Paoli, P.: Di- and tri-palladium(ii) polyazacycloalkane complexes. A case of deprotonated secondary nitrogen in solution and in solid state. J. Chem. Soc. Chem. Commun. 19, l382–1384 (1990)Google Scholar
  2. 2.
    Okawa, H., Nishio. J., Ohba, M., Tadokoro, M., Matsumoto, N., Koikawa, M., Kida, S., Fenton, D.E.: Heterodinuclear CuIIPbII and CuIIMII (M = Mn, Fe, Co, Ni, Cu, Zn) complexes of macrocycles with dissimilar 4- and 5-coordination sites: synthesis, structures, and properties. Inorg. Chem. 32, 2949–2957 (1993) and references cited thereinGoogle Scholar
  3. 3.
    Babcock, G.T., Vickery, L.E., Palmer, G.: The electronic state of heme in cytochrome oxidase II. Oxidation-reduction potential interactions and heme iron spin state behavior observed in reductive titrations. J. Biol. Chem. 253, 2400–2411 (1978)Google Scholar
  4. 4.
    Richardson, J.S., Thomas, K.A., Rubin, B.H., Richardson, D.C.: Crystal structure of bovine cu, zn superoxide dismutase at 3 a resolution: chain tracing and metal ligands. Proc. Nat. Acad. Sci. USA 72, 1349–1353 (1975)CrossRefGoogle Scholar
  5. 5.
    Zanello, P., Tamburini, S., Vigato, P.A., Mazzocchin, G.A.: Syntheses, structure and electrochemical characterization of homo- and heterodinuclear copper complexes with compartmental ligands. Coord. Chem. Rev. 77, 165–273 (1987)CrossRefGoogle Scholar
  6. 6.
    Milgrom, L.R.: The Colours of Life, An Introduction to the Chemistry of Porphyrins and Related Compounds. Oxford University Press, New York (1997)Google Scholar
  7. 7.
    Sibert, J.W., Cory, A.H., Cory, J.G.: Lipophilic derivatives of cyclam as new inhibitors of tumor cell growth. Chem. Commun. 154155 (2002)Google Scholar
  8. 8.
    Caravan, P., Ellison, J.J., McMurry, T.J., Lauffer, R.B.: Gadolinium (III) chelates as MRI contrast agents structures, dynamics and applications. Chem. Rev. 99, 2293–2352 (1999)CrossRefGoogle Scholar
  9. 9.
    Garcia, V.P., Yazigi, D.V., Cabrera, A., Galvez, P.V., Arriagada, M., Leon, D.R., Pizarro, N., Zanocco, A., Spodine, E.: Optical properties of binuclear zinc (II) macrocyclic complexes derived from 4-methyl-2,6-diformylphenol and 1,2-diaminobenzene. Polyhedron 28, 2335–2340 (2009)CrossRefGoogle Scholar
  10. 10.
    Che, C.M., Ho, C.M., Huang, J.S.: Metal–carbon multiple bonded complexes: carbene, vinylidene and allenylidene complexes of ruthenium and osmium supported by macrocyclic ligands. Coord. Chem. Rev. 251, 2145–2166 (2007)CrossRefGoogle Scholar
  11. 11.
    Rani, S., Kumar, S., Chandra, S.: Synthesis, structural, spectral, thermal and anti- microbial studies of palladium(II), platinum(II), ruthenium(III) and iridium(III) complexes derived from N, N, N, N-tetradentate macrocyclic ligand, Spectrochim. Acta Part A 78, 1507–1514 (2011)CrossRefGoogle Scholar
  12. 12.
    Mewis, R.E., Archibald, S.J.: Biomedical applications of macrocyclic ligand complexes. Coord. Chem. Rev. 254, 1686–1712 (2010)CrossRefGoogle Scholar
  13. 13.
    Khan, M.M.: Ru(III), Pd(II), Pt(III), and Pt(IV) Complexes of a novel 32-membered unsymmetrical dinucleating macrocyclic ligand. synth. react. Inorg. Met.-Org. Chem. Nano-Met. Chem. 40, 148–152 (2010)Google Scholar
  14. 14.
    Siddiqi, Z.A., Khan, M.M., Khalid, M., Kumar, S.: Spectral and electrochemical characterization of bimetallic complexes of a novel 32-membered unsymmetrical [N12] macrocycle. Transition Met. Chem. 32, 927–935 (2007)CrossRefGoogle Scholar
  15. 15.
    Siddiqi, Z.A., Khan, M.M.: Synthesis and characterization of a novel 32.membered unsymmetrical dinucleating [N12] macrocycle: preparation of bimetallic complexes M2LX2(ClO4)2 (M=Zn, Cd, or Hg; X=Cl, NCS, or NO3). Synth. React. Inorg. Met.-Org. Chem. Nano-Met. Chem 34, 897–917 (2004)CrossRefGoogle Scholar
  16. 16.
    Siddiqi, Z.A., Khan, M.M., Khalid, M.: Synthesis and spectral studies of a novel 20-membered unsymmetrical dinucleating [N8] macrocycle and its bimetallic complexes, M2LCln(ClO4)2 (n = 2, M=Co, Ni or Cu; N = 4, M=Cr or Fe). Polish J. Chem. 80, 377–386 (2006)Google Scholar
  17. 17.
    Stephenson, T.A., Wilkinson, G.: New complexes of ruthenium (II) and (III) with triphenylphosphine, triphenylarsine, trichlorostannate, pyridine, and other ligands. J. Inorg. Nucl. Chem. 28, 945–956 (1966)CrossRefGoogle Scholar
  18. 18.
    Furniess, B.S.: Vogel’s Text Book of Practical Organic Chemistry, V Edn. (1989)Google Scholar
  19. 19.
    Jolly, W.L.: The Synthesis and Characterization of Inorganic Compounds, Printice-Hall Inc. U.K. and Eire Printice Hall of Canada, Canada (1970)Google Scholar
  20. 20.
    Nakamoto, K.: Coordination compounds; organometallic compounds. In Infrared and Raman Spectra of Inorganic and Coordination Compounds, pp. 191–403, 4th Edn., A Wiley-Interscience Publication (1986)Google Scholar
  21. 21.
    Rosenthal, M.R.: The myth of the non-coordinating anion. J. Chem. Soc. 50, 331–334 (1973)Google Scholar
  22. 22.
    Lever, A.B.P.: Charge transfer spectra. In Inorganic Electronic Spectroscopy, pp. 125–248, 2nd Edn., Elsevier, Amsterdam (1984)Google Scholar
  23. 23.
    Lewis, J., Wilkins, R.G.: Modern Coordination Chemistry. Interscience Publisher, New York (1960)Google Scholar
  24. 24.
    Fuoss, R.M., Edelson, D.: Bolaform electrolytes. I. Di-(β-trimethylammoniumethyl)-succinate dibromide and related compounds. J. Am. Chem. Soc. 73, 269–273 (1951)CrossRefGoogle Scholar
  25. 25.
    Onsagar, L.: Zur Theorie der electrolyte II. Physik Z 28, 277–298 (1927)Google Scholar
  26. 26.
    Bozic, L.T., Bozic, B.: Conductance study of ion-pairing of potassium monoethyl benzeneazophosphonates and their macrocyclic polyether complexes in acetonitrile. Electrochim. Acta 35, 59–61 (1990)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.School of Chemical EngineeringYeungnam UniversityGyeongsanSouth Korea

Personalised recommendations