Chemistry of pyrimidinophanes: synthesis and applications: a review from 1990 until recently

  • Vyacheslav E. Semenov
Review Article


Pyrimidinophanes are macrocycles consisting of pyrimidine moieties bridged to each other with alkyl spacers. Most of the known pyrimidinophanes originate from pyrimidinic nucleobase uracil and its 5(6)-substituted derivatives. Diverse macrocyclic compounds with pyrimidine moieties have appeared during the last two decades, and in this review the synthesis and properties of the pyrimidinophanes studied have been described.


Macrocycles Pyrimidinophanes Pyrimidines Uracils Synthesis Applications 



This work was supported by the grant of the RFBR (№ 10-03-00365) and by the Federal goal-oriented program «Scientific and Scientific-Pedagogical Personnel of the Innovative Russia» (contract N 8432).


  1. 1.
    Hama, F., Sakata, Y., Misumi, S.: Synthesis of stacked purine bases. Nucleic Acids Symp. Ser. 8, 131–134 (1980)Google Scholar
  2. 2.
    Doyama, K., Hama, F., Sakata, Y., Misumi, S.: Synthesis of pyrimidinopurinophanes. Tetrahedron Lett. 22, 4101–4104 (1981)CrossRefGoogle Scholar
  3. 3.
    Doyama, K., Higashii, T., Seyama, F., Sakata, Y., Misumi, S.: Synthesis, structure and hypochromism of pyrimidinopurinophanes. Bull. Chem. Soc. Jpn. 61, 3619–3627 (1988)CrossRefGoogle Scholar
  4. 4.
    Seyama, F., Akahori, K., Sakata, Y., Misumi, S., Aida, M., Nagata, C.: Synthesis and properties of purinophanes. Relationship between the magnitude of hypochromism and stacking geometry of purine rings. J. Am. Chem. Soc. 110, 2192–2201 (1988)CrossRefGoogle Scholar
  5. 5.
    Leonard, N.J., McCredie, R.S., Logue, M.W., Cundall, R.L.: Synthetic spectroscopic models related to coenzymes and base pairs. XI. Solid state ultraviolet irradiation of 1,1′-trimethylenebisthymine and photosensitized irradiation of 1,1′-polymethylenebisthymines. J. Am. Chem. Soc. 95, 2320–2324 (1973)CrossRefGoogle Scholar
  6. 6.
    Golankiewicz, K., Skalski, B.: Synthesis and photochemical properties of quasimetacyclophanes derived from 5-alkyluracils. Pol. J. Chem. 52, 1365–1373 (1978)Google Scholar
  7. 7.
    Koroniak, H., Skalski, B., Golankiewicz, K.: The further investigation of physical and photochemical properties of quasimetacyclophane derived from thymine Biochem. Biophys. Res. Commun. 91, 375–382 (1979)CrossRefGoogle Scholar
  8. 8.
    Skalski, B., Koroniak, H., Golankiewicz, K.: Unconventional model of oligonucleotides. Cyclic tetramer derived from 1,3-trimethylene thymine. Physical and photochemical properties. Biochem. Biophys. Res. Commun. 100, 995–1001 (1981)CrossRefGoogle Scholar
  9. 9.
    Cherkasov, V.M., Boldyrev, I.V.: Macrocycles containing azine fragments (review). Chem. Heterocycl. Comp. 34, 749–761 (1998)CrossRefGoogle Scholar
  10. 10.
    DeMember, J.R., Wallace, F.A.: Uracil and its interaction with silver ion in aqueous alkaline media. J. Am. Chem. Soc. 97, 6240–6245 (1975)CrossRefGoogle Scholar
  11. 11.
    De Pasquale, R.J.: Uracil. A perspective. Ind. Eng. Chem. Prod. Res. Dev. 14, 278–286 (1978)CrossRefGoogle Scholar
  12. 12.
    Htay, M.M., Meth-Cohn, O.: N-Bridged heterocycles. Part III. A new simple synthesis of 1,3-polymethylenebenzimidazolones, their crown ether analogues and related systems. Tetrahedron Lett. 17, 79–82 (1976)CrossRefGoogle Scholar
  13. 13.
    Htay, M.M., Meth-Cohn, O.: N-Bridged heterocycles. Part IV. Metal complex formation with N-bridged heterocycles and two simple “yes-no” tests for complexibility of crown ethers and related systems. Tetrahedron Lett. 17, 469–472 (1976)CrossRefGoogle Scholar
  14. 14.
    Shvetsov, YuS, Shirshov, A.N., Reznik, V.S.: Synthesis and properties of pyrimidinylalkylsulsonamides. 4. Reactions of the Na salt p-toluenesulfonamide with mono-N-(ω-galoalkyl)uracils. Russ. Chem. Bull. 27, 1833–1837 (1978)CrossRefGoogle Scholar
  15. 15.
    Itahara, T.: Facile synthesis of pyrimidinophanes. Chem. Lett. 22, 233–236 (1993)CrossRefGoogle Scholar
  16. 16.
    Itahara, T.: Preparation of pyrimidinophanes from pyrimidine bases. Bull. Chem. Soc. Jpn. 69, 3239–3246 (1996)CrossRefGoogle Scholar
  17. 17.
    Sharma, R.L., Singh, J., Kumar, S., Kour, D., Sachar, A., Shallu, Poonam, Bhawana, : Synthesis of quinazolinophanes containing bridgehead nitrogen atoms from quinazoline-2,4(1H,3H)-dione. J. Heterocycl. Chem. 44, 1501–1504 (2007)CrossRefGoogle Scholar
  18. 18.
    Cichy, A.F., Saibaba, R., El Subbagh, H.I., Panzica, R.P., Abushanab, E.: 1′,2′-Secothymidines. The preparation of 2,3′-anhydro derivatives and the formation of two unusual dimeric products. J. Org. Chem. 56, 4653–4658 (1991)CrossRefGoogle Scholar
  19. 19.
    Kinoshita, T., Odawara, S., Fukumura, K., Furukawa, S.: Synthesis of 3,3′-(1,6-hexanediyl)bis-pyrimidine derivatives and 3,4-dithia[6,6](1.3). J. Heterocycl. Chem. 22, 1573–1576 (1985)CrossRefGoogle Scholar
  20. 20.
    Fattakhov, S.G., Solov’eva, S.E., Efremov, Yu.Ya., Rizvanov, I.Kh., Reznik, V.S.: Mannich reaction as a convenient route to new macrocyclic compounds containing an uracil fragment. Russ. J. Gen. Chem. 71, 469–470 (2001)CrossRefGoogle Scholar
  21. 21.
    Nikolaev, A.E., Semenov, V.E., Lodochnikova, O.A., Latypov, S.K., Reznik, V.S.: Synthesis and structure of the pyrimidinophanes with a sulfur atom in the spacer. Mendeleev Commun. 20, 4–6 (2010)CrossRefGoogle Scholar
  22. 22.
    Nikolaev, A.E., Semenov, V.E., Voloshina, A.D., Kulik, N.V., Reznik, V.S.: Synthesis and antimicrobial activity of pyrimidinophanes containing a uracil moiety and a bridging sulfur atom. Pharm. J. Chem. 44, 130–133 (2010)CrossRefGoogle Scholar
  23. 23.
    Semenov, V.E., Nikolaev, A.E., Kozlov, A.V., Efremov, Yu.Ya., Latypov, Sh.K., Reznik, V.S.: Synthesis of pyrimidinocyclophanes having a nitrogen atom. Russ. J. Org. Chem. 44, 882–890 (2008)CrossRefGoogle Scholar
  24. 24.
    Semenov, V.E., Nikolaev, A.E., Kozlov, A.V., Pod’’yachev, S.N., Lodochnikova, O.A., Kataeva, O.N., Latypov, K.Sh, Reznik, V.S.: Structure and properties of macrocyclic compounds containing a pyrimidine fragment. Russ. J. Org.Chem. 44, 891–900 (2008)CrossRefGoogle Scholar
  25. 25.
    Nikolaev, A.E., Semenov, V.E., Sharafutdinova, D.R., Efremov, Y.Y., Reznik, V.S.: Macrocyclic 5-bromouracil derivatives: synthesis and transformation of uracil ring. Tetrahedron Lett. 49, 5994–5997 (2008)CrossRefGoogle Scholar
  26. 26.
    Semenov, V.E., Voloshina, A.D., Toroptzova, E.M., Kulik, N.V., Zobov, V.V., Giniyatullin, RKh, Mikhailov, A.S., Nikolaev, A.E., Akamsin, V.D., Reznik, V.S.: Antibacterial and antifungal activity of acyclic and macrocyclic uracil derivatives with quaternized nitrogen atoms in spacers. Eur. J. Med. Chem. 41, 1093–1101 (2006)CrossRefGoogle Scholar
  27. 27.
    Semenov, V., Gubaidullin, A., Kataeva, O., Lodochnikova, O., Timosheva, A., Kataev, V., Giniyatullin, R., Nikolaev, A., Chernova, A., Shagidullin, R., Nafikova, A., Reznik, V.: Novel macrocyclic uracil derivatives: structure in solid and solution. Struct. Chem. 17, 409–417 (2006)CrossRefGoogle Scholar
  28. 28.
    Semenov, V.E., Voloshina, A.D., Kulik, N.V., Uraleva, SYu., Giniyatullin, RKh, Mikhailov, A.S., Akamsin, V.D., Efremov, Yu.Ya., Reznik, V.S.: Synthesis and antimicobial activity of pyrimidinophanes with two uracil units and bridging nitrogen atoms. Pharm. J. Chem. 43, 448–453 (2009)CrossRefGoogle Scholar
  29. 29.
    Semenov, V.E., Giniyatullin, RKh, Mikhailov, A.S., Nikolaev, A.E., Kharlamov, S.V., Latypov, S.K., Reznik, V.S.: Unusual reaction of macrocyclic uracils with paraformaldehyde. Eur. J. Org. Chem. 2011, 5423–5426 (2011)CrossRefGoogle Scholar
  30. 30.
    Semenov, V.E., Chernova, A.V., Doroshkina, G.M., Shagidullin, R.R., Giniyatullin, RKh, Mikhailov, A.S., Akamsin, V.D., Nikolaev, A.E., Reznik, V.S., Efremov, Yu.Ya., Sharafutdinova, D.R., Nafikova, A.A., Morozov, V.I., Kataev, V.E.: Reactions of pyrimidinophanes and their acyclic analogs with electron-deficient substrates. Russ. J. Gen. Chem. 76, 292–301 (2006)CrossRefGoogle Scholar
  31. 31.
    Semenov, V.E., Morozov, V.I., Chernova, A.V., Shagidullin, R.R., Mikhailov, A.S., Giniyatullin, RKh, Akamsin, V.D., Reznik, V.S.: Copper(II) bromide complexes with acyclic and cyclic pyrimidine-containing phane ligands. Russ. J. Coord. Chem. 33, 685–691 (2007)CrossRefGoogle Scholar
  32. 32.
    Caplar, V.A., Tumir, L., Zinic, Ml: A novel type of rigid macrocycle with bis(3-uracilyl)methane and hexadiyne units. The uracilophane. Croat. Chem. Acta 69, 1617–1631 (1996)Google Scholar
  33. 33.
    Hakimelahi, GhH, Gassanov, GSh, Hsu, M.-H., Hwu, J.R., Hakimelahi, Sh: A novel approach towards studying non-genotoxic enediynes as potential anticancer therapeutics. Bioorg. Med. Chem. 10, 1321–1328 (2002)CrossRefGoogle Scholar
  34. 34.
    Kumar, S., Paul, D., Singh, H.: The first synthesis of uracil based calix[4]arene derivatives. Tetrahedron Lett. 38, 3607–3608 (1997)CrossRefGoogle Scholar
  35. 35.
    Kumar, S., Hundal, G., Paul, D., Hundal, M.S., Singh, H.: Heterocalixarenes. Part 1: calix[2]uracil[2]arene: synthesis, X–ray structure, conformational analysis and binding character. J. Org. Chem. 64, 7717–7726 (1999)CrossRefGoogle Scholar
  36. 36.
    Kumar, S., Paul, D., Singh, H.: Heterocalixarenes. Part 2: calix[m]uracil[n]benzimidazol-2(1H)-one[3]arenes: synthesis and binding characteristics. J. Incl. Phenom. Macrocycl. Chem. 37, 371–382 (2000)CrossRefGoogle Scholar
  37. 37.
    Kumar, S., Paul, D., Singh, H.: The synthesis and binding characters of 1,3-bis(uracil-1/3-ylmethyl)benzene based acyclic and cyclic receptors. Indian J. Chem. Sect. B 39, 83–88 (2000)Google Scholar
  38. 38.
    Kumar, S., Hundal, G., Paul, D., Hundal, M.S., Singh, H.: Heterocalixarenes. Part 3: bis–oxobridged calix[1]cyclicurea[3]arene and calix [1]cyclicurea[1]pyridine[2]arenes. Synthesis, X–ray crystal structure and conformational analysis. J. Chem. Soc. Perkin Trans. 1, 1037–1043 (2000)CrossRefGoogle Scholar
  39. 39.
    Kumar, S., Hundal, G., Paul, D., Hundal, M.S., Singh, H.: Heterocalixarenes. Part 4: synthesis of oxocalix[1]heterocycle[2]arenes: a unique H–bonding network in calix[1]-benzimidazol-2-one[2]arene·1/2H2O. J. Chem. Soc. Perkin Trans. 1, 2295–2301 (2000)CrossRefGoogle Scholar
  40. 40.
    Kumar, S., Paul, D., Singh, H.: Syntheses, structures and interactions of heterocalixarenes. Adv. Heterocycl. Chem. 89, 65–124 (2005)CrossRefGoogle Scholar
  41. 41.
    Newkome, G.R., Nayak, A., Sorci, M.G., Benton, W.H.: Synthesis of multiheteromacrocycles containing the 4,6-pyrimidino moiety connected by carbon-oxygen and/or -sulfur linkages. J. Org. Chem. 44, 3812–3816 (1979)CrossRefGoogle Scholar
  42. 42.
    Katz, J.L., Geller, B.J., Conry, R.R.: Synthesis of oxacalixarenes incorporating nitrogen heterocycles: evidence for thermodynamic control. Org. Lett. 8, 2755–2758 (2006)CrossRefGoogle Scholar
  43. 43.
    Maes, W., Dehaen, W.: Oxacalix[n](het)arenes. Chem. Soc. Rev. 37, 2393–2402 (2008)CrossRefGoogle Scholar
  44. 44.
    Maes, W., Dehaen, W., Rossom, W.V., Hecke, K.V., Meervelt, L.V., Dehaen, W.: Selective synthesis of functionalized thia- and oxacalix[2]arene[2]pyrimidines. Org. Lett. 8, 4161–4164 (2006)CrossRefGoogle Scholar
  45. 45.
    Rossom, W.V., Maes, W., Kishore, L., Ovaere, M., Meervelt, L.V., Dehaen, W.: Efficient post-macrocyclization functionalizations of oxacalix[2]arene[2]pyrimidines. Org. Lett. 10, 585–588 (2008)CrossRefGoogle Scholar
  46. 46.
    Rossom, W.V., Kishore, L., Robeyns, K., Meervelt, L.V., Dehaen, W., Maes, W.: Synthetic exploration of oxacalix[2]arene[2]quinazolines. Eur. J. Org. Chem. 2010, 4122–4129 (2010)CrossRefGoogle Scholar
  47. 47.
    Rossom, W.V., Caers, J., Robeyns, K., Meervelt, L.V., Maes, W., Dehaen, W.: (Thio)ureido anion receptors based on a 1,3-alternate oxacalix[2]arene[2]pyrimidine scaffold. J. Org. Chem. 77, 2791–2797 (2012)CrossRefGoogle Scholar
  48. 48.
    Sonawane, M.P., Hecke, K.V., Jacobs, J., Thomas, J., Meervelt, L.V., Dehaen, W., Rossom, W.V.: Synthetic and structural exploration of [2n]tetrathiacalix[2]arene[2]pyrimidines. J. Org. Chem. 77, 8444–8450 (2012)CrossRefGoogle Scholar
  49. 49.
    Rossom, W.V., Ovaere, M., Meervelt, L.V., Dehaen, W., Maes, W.: Efficient fragment coupling approaches toward large oxacalix[n]arenes. Org. Lett. 11, 1681–1684 (2009)CrossRefGoogle Scholar
  50. 50.
    Rossom, W.V., Robeyns, K., Ovaere, M., Meervelt, L.V., Dehaen, W., Maes, W.: Odd-numbered oxacalix[n]arenes (n = 5, 7): synthesis and solid-state structures. Org. Lett. 13, 126–129 (2011)CrossRefGoogle Scholar
  51. 51.
    Ma, M.-L., Li, X.-Y., Zhao, X.-L., Guo, F., Jiang, B., Wen, K.: Silver-mediated self-assembly of metallosupramolecular networks based on pyrimidine-containing oxacalix[n]aromatics. CrystEngComm. 13, 1752–1754 (2011)CrossRefGoogle Scholar
  52. 52.
    Wang, L.-X., Wang, D.-X., Huang, Z.-T., Wang, M.-X.: Synthesis and highly selective bromination of azacalix[4]pyrimidine macrocycles. J. Org. Chem. 75, 741–747 (2010)CrossRefGoogle Scholar
  53. 53.
    Wang, L.-X., Zhao, L., Wang, D.-X., Wang, M.-X.: Synthesis of 1,3,5-alternate azacalix[3]pyridine[3]pyrimidine and its complexation with fullerenes via multiple π/π and CH/π interactions. Chem. Commun. 47, 9690–9692 (2011)CrossRefGoogle Scholar
  54. 54.
    Rossom, W.V., Kundrat, O., Ngo, T.H., Lhoták, P., Dehaen, W., Maes, W.: An oxacalix[2]arene[2]pyrimidine-bis(Zn-porphyrin) tweezer as a selective receptor towards fullerene C70. Tetrahedron Lett. 51, 2423–2426 (2012)CrossRefGoogle Scholar
  55. 55.
    Kobelev, S.M., Averin, A.D., Buryak, A.К., Beletskaya, I.P.: Amination of 4,6- and 2,4-dichloropyrimidines with polyamines. Russ. J. Org. Chem. 46, 1231–1242 (2010)CrossRefGoogle Scholar
  56. 56.
    Beletskaya, I.P., Averin, A.D., Bessmertnykh, A.G., Denat, F., Guilard, R.: Palladium-catalyzed amination in the synthesis of polyazamacrocycles. Russ. J. Org. Chem. 46, 947–967 (2010)CrossRefGoogle Scholar
  57. 57.
    Luecking, U., Siemeister, G., Schaefer, M., Briem, H., Krueger, M., Lienau, P., Jautelat, P.: Macrocyclic aminopyrimidines as multitarget CDK and VEGF-R inhibitors with potent antiproliferative activities. ChemMedChem 2, 63–77 (2007)CrossRefGoogle Scholar
  58. 58.
    Cline, R.E., Fink, R.M., Fink, K.: Synthesis of 5-substituted pyrimidines via formaldehyde addition. J. Am. Chem. Soc. 81, 2521–2527 (1959)CrossRefGoogle Scholar
  59. 59.
    Pfleiderer, W., Sagi, F., Grozinger, L.: Uber die Umsetzungen von 4-amino-pyrimidinen mit Aldehyden. Chem. Ber. 99, 3530–3538 (1966)CrossRefGoogle Scholar
  60. 60.
    Kinoshita, T., Kondo, M., Tanaka, H., Furukawa, S.: Facile synthesis of 5,5′-methylenebis[1,3-disubstituted 6-methyl-2,4(1H,3H)-pyrimidinone]derivative. Synthesis 10, 857–859 (1986)CrossRefGoogle Scholar
  61. 61.
    Kinoshita, T., Tanaka, H., Furukawa, S.J.: Synthesis of 5,5′-methylenebispyrimidine derivatives and 3,4-dithia[6.1](1.5)pyrimidinophane. Chem. Pharm. Bull. 34, 1809–1813 (1986)CrossRefGoogle Scholar
  62. 62.
    Semenov, V.E., Galiullina, L.F., Lodochnikova, O.A., Kataeva, O.N., Gubaidullin, A.T., Chernova, A.V., Efremov, Y.Y., Latypov, S.K., Reznik, V.S.: Triuracils—1,3-bis[ω-(N-methyluracil-1-yl)alkyl]thymines and their 5,5′-cyclic counterparts. Eur. J. Org. Chem. 2007, 4578–4593 (2007)CrossRefGoogle Scholar
  63. 63.
    Semenov, V.E., Lodochnikova, O.A., Gubaidullin, A.T., Kataeva, O.N., Chernova, A.V., Efremov, Y.Y., Kharlamov, S.V., Latypov, S.K., Reznik, V.S.: α,ω-(Bis(3,6-dimethyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-1-yl)alkanes and products of their cyclization, pyrimidinophanes: intra- and intermolecular interaction in crystals and in solutions. Russ. Chem. Bull. 57, 124–136 (2008)CrossRefGoogle Scholar
  64. 64.
    Das, N., Miguel, P.J.S., Khutia, A., Lazar, M., Lippert, B.: Hybrids between classical and metallacalix[4]arenes based on uracil and cis-PtIIL2 entities (L = P(Ph)3 or L2 = 2,2′-bipyridine). Dalton Trans. 42, 9120–9122 (2009)CrossRefGoogle Scholar
  65. 65.
    Eiermann, U., Krieger, C., Neugebauer, F.A.: [2.2](2.5)Pyrimidinophanes: synthesis and molecular. Chem. Ber. 123, 1885–1889 (1990)CrossRefGoogle Scholar
  66. 66.
    Zakharkin, L.I., Churilova, I.M., Guseva, V.V.: Preparation of brassylic acid from 5,6,7,8,9,10,11,12,13,14-decahydrocyclododeca[1,2-d]pyrimidine(1H, 3H)-2,4-dione obtained by the condensation of cyclododecanone and urea or biuret. Russ. Chem. Bull. 41, 188–191 (1992)CrossRefGoogle Scholar
  67. 67.
    Itahara, T.: Preparation of novel heterocycles by dimeric alkylation of 2-thiouracils and formation of complexes with copper and silver ions. Chem. Lett. 25, 1099–1100 (1996)CrossRefGoogle Scholar
  68. 68.
    Itahara, T.: Preparation of thiapyrimidinophanes from 2,4-dithiouracil. J. Heterocycl. Chem. 34, 687–688 (1997)CrossRefGoogle Scholar
  69. 69.
    Upadhyay, N., Agarwal, N., Goel, A., Ram, V.J.: A concise synthesis of pyrimidinophanes from 6-aryl-5-cyano-2-thiouracil. J. Chem. Res. (S) 6, 380–382 (2003)CrossRefGoogle Scholar
  70. 70.
    Redd, J.T., Bradshaw, J.S., Huszthy, P., Izatt, R.M.: New pyrimidino-crown ether ligands. J. Heterocycl. Chem. 31, 1047–1052 (1994)CrossRefGoogle Scholar
  71. 71.
    Redd, J.T., Bradshaw, J.S., Huszthy, P., Izatt, R.M.: Pyrimidino- and proton-ionizable pyrimidono-crown ether ligands: synthesis and preliminary complexation studies. J. Incl. Phenom. Mol. Recognit. Chem. 29, 301–308 (1997)CrossRefGoogle Scholar
  72. 72.
    Bradshaw, J.S., Huszthy, P., Redd, J.T., Zhang, X.-X., Wang, T.-M., Hathaway, J.K., Young, J., Izatt, R.M.: Enantiomeric recognition of chiral ammonium salts by chiral pyridino- and pyrimidino-18-crown-6 ligands: effect of structure and solvents. Pure Appl. Chem. 67, 691–695 (1995)CrossRefGoogle Scholar
  73. 73.
    Semenov, V.E., Mikhailov, A.S., Voloshina, A.D., Kulik, N.V., Nikitashina, A.D., Zobov, V.V., Kharlamov, S.V., Latypov, S.K., Reznik, V.S.: Antimicrobial activity of pyrimidinophanes with thiocytosine and uracil moieties. Eur. J. Med. Chem. 46, 4715–4724 (2011)CrossRefGoogle Scholar
  74. 74.
    Avasthi, K., Ansari, A., Tewari, A.K., Kant, R., Maulik, P.R.: Pyrazolo[3,4-d]pyrimidinophanes: convenient synthesis of a new class of cyclophane and X-ray structure of the first representative. Org. Lett. 11, 5290–5293 (2009)CrossRefGoogle Scholar
  75. 75.
    Sameni, S., Jeunesse, C., Matt, D., Harrowfield, J.: Calix[4]arene daisychains. Chem. Soc. Rev. 38, 2117–2146 (2009)CrossRefGoogle Scholar
  76. 76.
    Krejči, L., Budĕšinský, M., Cišařová, I., Kraus, T.: Tubular duplex α-cyclodextrin triply bridged with disulfide bonds: synthesis, crystal structure and inclusion complexes. Chem. Commun. 24, 3557–3559 (2009)CrossRefGoogle Scholar
  77. 77.
    Rao, M.R.: Synthesis and studies of covalently linked porphyrin-expanded heteroporphyrin dyads. Eur. J. Org. Chem. 2011, 1335–1345 (2011)CrossRefGoogle Scholar
  78. 78.
    Itahara, T.: Oxidative coupling between pyrimidinophanes and phenylenedimaleimides by palladium acetates. Synthesis 11, 1252–1254 (1997)CrossRefGoogle Scholar
  79. 79.
    Strobel, M., Kita-Tokarczyk, K., Taubert, A., Vebert, C., Heiney, P.A., Chami, M., Meier, W.: Self-Assembly of amphiphilic calix[4]arenes in aqueous solution. Adv. Funct. Mater. 16, 52–59 (2005)Google Scholar
  80. 80.
    Helttunena, K., Shahgaldian, P.: Self-assembly of amphiphilic calixarenes and resorcinarenes in water. New J. Chem. 34, 2704–2714 (2010)CrossRefGoogle Scholar
  81. 81.
    Reeve, J.E., Collins, H.A., De Mey, K., Kohl, M.M., Thorley, K.J., Paulsen, O., Claus, K., Anderson, H.L.: Amphiphilic porphyrins for second harmonic generation imaging. J. Am. Chem. Soc. 131, 2758–2759 (2009)CrossRefGoogle Scholar
  82. 82.
    Sallas, F., Darcy, R.: Amphiphilic cyclodextrins—advances in synthesis and supramolecular chemistry. Eur. J. Org. Chem. 2008, 957–959 (2008)CrossRefGoogle Scholar
  83. 83.
    Gokel, G.W., Matthew Leevy, W., Weber, M.E.: Crown ethers: sensors for ions and molecular scaffolds for materials and biological models. Chem. Rev. 104, 2723–2750 (2004)CrossRefGoogle Scholar
  84. 84.
    Sivakova, S., Rowan, S.J.: Nucleobases as supramolecular motifs. Chem. Soc. Rev. 34, 9–21 (2001)CrossRefGoogle Scholar
  85. 85.
    Gissot, A., Camplo, M., Grinstaff, M.W., Barthrelremy, P.: Nucleoside, nucleotide and oligonucleotide based amphiphiles: a successful marriage of nucleic acids with lipids. Org. Biomol. Chem. 6, 1324–1333 (2008)CrossRefGoogle Scholar
  86. 86.
    Shimahara, N., Asakawa, H., Kawamatsu, Y., Hirano, H.: Decomposition of thiamine in alcohol solution. Chem. Pharm. Bull. 22(9), 2086–2090 (1974)CrossRefGoogle Scholar
  87. 87.
    Cramer, R.E., Carrie, M.J.J.: Structure of (24-pyrimidinium crown-6)[(DMSO)HgI3][HgI4][Hg2I7]·11DMSO·2H2O. Inorg. Chem. 29(19), 3902–3904 (1990)CrossRefGoogle Scholar
  88. 88.
    Cramer, R.E., Fermin, V., Kuwabara, E., Kirkup, R., Selman, M., Aoki, K., Adeyemo, A., Yamazaki, H.J.: Synthesis and structure of the chloride and nitrate inclusion complexes of [16-pyrimidinium crown-4]4+. J. Am. Chem. Soc. 113, 7033–7034 (1991)CrossRefGoogle Scholar
  89. 89.
    Cramer, R.E., Waddling, C.A., Fujimoto, C.H., Smith, D.W., Kim, K.E.: Crystal structures of the nitrate salt of 24-pyrimidinium crown-6 5,12,19,26,33,40-hexaamino-3,10,17,24,31,38-hexamethyl[1.6]-(1,5)pyrimidiniophane and its degradation product in water–methanol mixtures. J. Chem. Soc. Dalton Trans. 10, 1675–1683 (1997)CrossRefGoogle Scholar
  90. 90.
    Cramer, R.E., Smith, D.W., VanDoorne, W.: The structures of [24-pyrimidinium crown-6][Au(CN)2]4 (NO3)2.2H2O, [24-pyrimidinium crown-6][Au(CN)2]6.6.5H2O, and [16-pyrimidinium crown-4][Au(CN)2]4.6.5 H2O, in which aurophilic interactions produce trimers, tetramers, and chains of Au(CN)2-ions. Inorg. Chem. 37, 5895–5901 (1998)CrossRefGoogle Scholar
  91. 91.
    Zakharova, L.Ya., Semenov, V.E., Voronin, M.A., Valeeva, F.G., Ibragimova, A.R., Giniatullin, R.Kh., Chernova, A.V., Kharlamov, S.V., Kudryavtseva, L.A., Latypov, S.K., Reznik, V.S., Konovalov, A.I.: Nanoreactors based on amphiphilic uracilophanes: the self-organization and the reactivity study. J. Phys. Chem. Sect. B 111, 14152–14162 (2007)CrossRefGoogle Scholar
  92. 92.
    Voronin, M.A., Valeeva, F.G., Zakharova, L.Ya., Giniatullin, R.Kh, Semenov, V.E., Reznik, V.S.: Amphiphilic pyrimidinophane, a new dimeric surfactant: synthesis, aggregation, and catalytic activity. Colloid J. 72, 323–331 (2010)CrossRefGoogle Scholar
  93. 93.
    Voronin, M.A., Valeeva, F.G., Zakharova, L.Ya., Giniatullin, R.Kh, Semenov, V.E., Reznik, V.S.: Regulation of the rate oh hydrolysis of phosphorus acid esters in organized systems based on amphiphilic pyrimidinophanes. Kinet. Catal. 51, 644–652 (2010)CrossRefGoogle Scholar
  94. 94.
    Voronin, M.A., Gabdrakhmanov, D.R., Semenov, V.E., Valeeva, F.G., Mikhailov, A.S., Nizameev, I.R., Kadirov, M.K., Zakharova, L.Ya., Reznik, V.S., Konovalov, A.I.: A novel bolaamphiphilic pyrimidinophane as building block for design of nanosized supramolecular systems with concentration-dependent structural behavior. ACS Appl. Mater. Interfaces. 3, 402–409 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.A. E. Arbuzov Institute of Organic and Physical Chemistry of Kazan Scientific Center of Russian Academy of SciencesKazanRussian Federation

Personalised recommendations