Advertisement

Computational investigation of enol/keto chloramphenicol with β-cyclodextrin

  • Madi Fatiha
  • Largate Leila
  • Khatmi Djamel Eddine
  • Nouar Leila
Original Article

Abstract

PM3 and ONIOM2 were carried out to investigate the structures and properties for the inclusion complexes of chloramphenicol tautomers into β-cyclodextrin (at 1:1 stoichiometry). Two possible orientations into host cavity were considered for both enol and keto chloramphenicol. The PM3 results gives that B orientation is more preferred for enol and keto form, the preference is of 0.63 and 1.67 kcal/mol respectively. This preference is greater in the case of ONIOM2 calculations. Finally, the chemical shifts (ppm) of free and complexed chloramphenicol were calculated at B3LYP/6-31G(d) by (GIAO method) and compared with experimental data taken from the literature.

Keywords

Cyclodextrin Chloramphenicol PM3 ONIOM2 GIAO 

Notes

Acknowledgments

This study was supported by Algerian Ministry of Higher Education and Scientific Research and General Direction of Scientific Research as a part of projects CNEPRU (No.E01520100004) and PNR (8/u24/4814).

References

  1. 1.
    Shen, Y.S., Sun, R.T., Chen, T.H.: Shanghai handbook of practical pharmaceutical, p. 100. Wenhui, Shanghai (1992)Google Scholar
  2. 2.
    Li, N.B., Luo, H.Q., Liu, S.P.: Resonance Rayleigh scattering study of the inclusion complexation of chloramphenicol with β-cyclodextrin. Talanta 66, 495 (2005)CrossRefGoogle Scholar
  3. 3.
    Ali, S.M., Asmat, F., Maheshwari, A.: NMR spectroscopy of inclusion complex of D-(−)-chloramphenicol with β-cyclodextrin in aqueous solution. IL Farmaco 59, 835 (2004)CrossRefGoogle Scholar
  4. 4.
    Cannors, K.A.: The stability of cyclodextrin complexes in solution. Chem. Rev. 97, 1326 (1997)Google Scholar
  5. 5.
    Szejtli, J.: Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 98, 1743 (1998)CrossRefGoogle Scholar
  6. 6.
    Szejtli, J.: Past, present, and future of cyclodextrin research. Pure.App. Chem. 76, 1825 (2004)CrossRefGoogle Scholar
  7. 7.
    Botsi, A., Yannakopoulou, K., Hadjoudis, E., Waite, J.: AM1 calculations on inclusion complexes of cyclomaltoheptaose (beta-cyclodextrin) with 1,7-dioxaspiro[5.5]undecane and nonanal, and comparison with experimental results. Carbohydr. Res. 283, 1 (1996)CrossRefGoogle Scholar
  8. 8.
    Bodor, N., Huang, M.J., Watts, J.D.: J. Incl. Phenom. Macrocycl. Chem. 25, 97 (1996)CrossRefGoogle Scholar
  9. 9.
    Godinez, L.A., Schulze-Fiehn, B.G., Patel, S., Criss, C.M., Evanseck, J.D., Kaifer, A.E.: Supramol. Chem. 8, 17 (1996)CrossRefGoogle Scholar
  10. 10.
    Huang, M.J., Watts, J.D., Bodor, N.: Theoretical studies of the inclusion complexes of β-cyclodextrin with methylated benzoic acids. Int. J. Quantum Chem. 64, 711 (1997)CrossRefGoogle Scholar
  11. 11.
    Huang, M.J., Watts, J.D., Bodor, N.: Theoretical studies of inclusion complexes of α- and β-cyclodextrin with benzoic acid and phenol. Int. J. Quantum Chem. 65, 1135 (1997)CrossRefGoogle Scholar
  12. 12.
    Avakyan, V.G., Nazarov, V.B., Alfimov, M.V., Bagaturyants, A.A., Voronezheva, N.L.: The role of intra- and intermolecular hydrogen bonds in the formation of β-cyclodextrin head-to-tail dimmers. The results of ab initio and semiempirical quantum-chemical calculations. Russ. Chem. Bull. 50, 206 (2001)CrossRefGoogle Scholar
  13. 13.
    Dos Santos, H.F., Duarte, H.A., Sinisterra, R.D., De MeloMattos, S.V., De Oliveira, L.F.C., De Almeida, W.B.: Quantum-mechanical study of the interaction of α-cyclodextrin with methyl mercury chloride. Chem. Phys. Lett. 319, 569 (2000)CrossRefGoogle Scholar
  14. 14.
    Liu, L., Li, X.S., Song, K.S., Guo, Q.X.: PM3 studies on the complexation of α-cyclodextrin with benzaldehyde and acetophenone. Theo. chem. 531, 127 (2000)Google Scholar
  15. 15.
    Estrada, E., Lopez, I.P., Torres-Labandeira, J.J.: Molecular modeling(MM2 and PM3) and experimental (NMR and Thermal Analysis) studies on the inclusion complex of salbutamol and β-cyclodextrin. J. Org. Chem. 65, 8510 (2000)CrossRefGoogle Scholar
  16. 16.
    Song, K.-S., Hou, C.-R., Liu, L., Li, X.-S., Guo, Q.-X.: A quantum-chemical study on the molecular recognition of β-cyclodextrin with ground and excited xanthones. J.Photo-chem.Photobiol. A139, 105 (2001)CrossRefGoogle Scholar
  17. 17.
    Barbiric, Castro, D.J., de Rossi, E.A.: A molecular mechanics study of 1:1 complexes between azobenzene derivatives and β-cyclodextrin. J.Mol.Struct. (Theochem.) 532, 171 (2000)CrossRefGoogle Scholar
  18. 18.
    Yang, E.-C., Chen, J., Zhao, X.-J.: β-cyclodextrin-α-aminopyridine interaction: a DFT study. Russ. Chem. Bull. 56, 430 (2007)CrossRefGoogle Scholar
  19. 19.
    Pumera, M., Rulisek, L.: Structures of inclusion complexes of halogenbenzoicacids and α-cyclodextrin based on AM1 calculations. J. Mol. Model 12, 799 (2006)CrossRefGoogle Scholar
  20. 20.
    Lipkowitz, K.B.: Applications of computational chemistry to the study of cyclodextrins. Chem. Rev. 98, 1829 (1998)CrossRefGoogle Scholar
  21. 21.
    Liu, L., Guo, Q.-X.: Use of quantum chemical methods to study cyclodextrin chemistry. J. Incl. Phenom. Macrocycl. Chem. 50, 95 (2004)Google Scholar
  22. 22.
    Chen, S., Teng, Q., Wu, S.: Theoretical studies on the binding affinities of β-cyclodextrin to small molecules and monosaccharides. CEJC 4, 223 (2006)Google Scholar
  23. 23.
    Madi, F., Leila, L., Khatmi, D.E.: Molecular modeling study of para amino benzoic acids recognition by β-cyclodextrin. Orbital 1, 26–37 (2009)Google Scholar
  24. 24.
    Madi, F., Leila, L., Khatmi, D.E.: Theoretical approach in the study of the inclusion processes of sulconazole with β-cyclodextrin. J. Mol. Liq. 154, 1–5 (2010)CrossRefGoogle Scholar
  25. 25.
    Liu, L., Li, X.-S., Mu, T.W., Guo, Q.: Interplay between Molecular Recognition and Redox Properties: A Theoretical Study of the Inclusion Complexation of β-cyclodextrin with Phenothiazine and its Radical Cation. J. Incl. Phenom. Macrocycl. Chem. 38, 199 (2000)CrossRefGoogle Scholar
  26. 26.
    Holt, J.S.: Structural characterization of the Brooker’s merocyanine/β-cyclodextrin complex using NMR spectroscopy and molecular modeling. J. Mol. Struct. (Theochem.) 965, 31 (2010)Google Scholar
  27. 27.
    Xing, S.K., Zhang, C., Ai, H.Q., Zhao, Q., Zhang, Q., Sun, D.Z.: Theoretical study of the interaction of β-cyclodextrin with2′-hydroxyl-5′-methoxyacetophone and two of its isomers. J. Mol. Liq. 146, 15 (2009)CrossRefGoogle Scholar
  28. 28.
    Ge, X., He, J., Yang, Y., Qi, F., Huang, Z., Ruihua, L., Huang, L., Yao, X.: Study on inclusion complexation between plant growth regulator 6-benzylaminopurine and b-cyclodextrin: Preparation, characterization and molecular modeling. J. Mol. Struc. 994, 163 (2011)CrossRefGoogle Scholar
  29. 29.
    Gaussian 03, Revision B.01, M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B.Mennucci,M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada,M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa,M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian, Inc., PittsburghGoogle Scholar
  30. 30.
    Hyperchem, Release 7.51 for windows 2002 Hypercube. IncGoogle Scholar
  31. 31.
    Dapprich, S.: I. Koma′romi, K. S. Byun, K. Morokuma, M. J. Frisch, A new ONIOM implementation in gaussian98.I. The calculation of energies, gradients, vibrational frequencies and electric field derivatives. J. Mol. Struct. (Theochem) 461(462), 1–21 (1999)CrossRefGoogle Scholar
  32. 32.
    Kuno, M., Hannongbua, S., Morokuma, K.: Theoretical investigation on nevirapine and HIV-1 reverse transcriptase binding site interaction, based on ONIOM method. Chem. Phys. Lett. 380, 456–463 (2003)CrossRefGoogle Scholar
  33. 33.
    Yuksek, H.: I.cakmak, S.sadi, M.alkan, H.baykara, Synthesis and GIAO NMR Calculation for some novel 4-heteroarlidenamino-4,5-dihydro-1H-1,2,4-triazol-5-one derivatives: comparison of theoretical and experimental 1H- and 13C- Chemical shifts. Int. J. Mol. Sci. 6, 219 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Madi Fatiha
    • 1
  • Largate Leila
    • 1
  • Khatmi Djamel Eddine
    • 1
  • Nouar Leila
    • 1
  1. 1.Laboratory of Computational Chemistry and Nanostructures, Department of Material Sciences, Faculty of Mathematical, Informatics and Material SciencesUniversity of 08 Mai 1945GuelmaAlgeria

Personalised recommendations