Anion binding properties of tris(2-hydroxyphenyl)methanes

  • Tatsunori Sato
  • Kazuaki Ito
Original Article


Tris(2-hydroxyphenyl)methane derivatives (1) displayed excellent selectivity for Cl in comparison with other anions tested (Br, I and NO3 ) by 1H NMR titration experiments. This selectivity is attributed to the fit size and shape of Cl, which favor the formation of a stable host–guest complex with 1 through the multiple intermolecular hydrogen bonds.


Tris(2-hydroxyphenyl)methane Anion receptor Hydroxyl group 

Supplementary material

10847_2012_258_MOESM1_ESM.tif (107 kb)
Supplementary material 1 (TIFF 106 kb)
10847_2012_258_MOESM2_ESM.tif (117 kb)
Supplementary material 2 (TIFF 116 kb)
10847_2012_258_MOESM3_ESM.tif (122 kb)
Supplementary material 3 (TIFF 122 kb)
10847_2012_258_MOESM4_ESM.tif (136 kb)
Supplementary material 4 (TIFF 136 kb)
10847_2012_258_MOESM5_ESM.tif (139 kb)
Supplementary material 5 (TIFF 138 kb)
10847_2012_258_MOESM6_ESM.tif (139 kb)
Supplementary material 6 (TIFF 139 kb)
10847_2012_258_MOESM7_ESM.tif (139 kb)
Supplementary material 7 (TIFF 139 kb)
10847_2012_258_MOESM8_ESM.tif (139 kb)
Supplementary material 8 (TIFF 139 kb)
10847_2012_258_MOESM9_ESM.tif (138 kb)
Supplementary material 9 (TIFF 137 kb)
10847_2012_258_MOESM10_ESM.tif (165 kb)
Supplementary material 10 (TIFF 164 kb)
10847_2012_258_MOESM11_ESM.tif (134 kb)
Supplementary material 11 (TIFF 134 kb)
10847_2012_258_MOESM12_ESM.tif (115 kb)
Supplementary material 12 (TIFF 115 kb)


  1. 1.
    Schmidtchen, F.P., Berger, M.: Artificial organic host molecules for anions. Chem. Rev. 97, 1609–1646 (1997)CrossRefGoogle Scholar
  2. 2.
    Beer, P.D., Gale, P.A.: Anion recognition and sensing: the state of the art and future perspectives. Angew. Chem. Int. Ed. Engl. 40, 486–516 (2001)CrossRefGoogle Scholar
  3. 3.
    Gale, P.A.: Anion and ion-pair receptor chemistry: highlights from 2000 and 2001. Coord. Chem. Rev. 240, 191–221 (2003)CrossRefGoogle Scholar
  4. 4.
    Gale, P.A.: Anion coordination and anion-templated assembly: highlights from 2002 to 2004. Coord. Chem. Rev. 250, 2939–2951 (2006)CrossRefGoogle Scholar
  5. 5.
    Gale, P.A.: Structural and molecular recognition studies with acyclic anion receptors. Acc. Chem. Res. 39, 465–475 (2006)CrossRefGoogle Scholar
  6. 6.
    Gale, P.A., Garcia-Garrido, S.E., Garric, J.: Anion receptors based on organic frameworks: highlights from 2005 and 2006. Chem. Soc. Rev. 37, 151–190 (2008)CrossRefGoogle Scholar
  7. 7.
    Odashima, K., Ito, T., Tohda, K., Umezawa, Y.: A systematic study on the complexation of quaternary ammonium salts and neutral phenol. Chem. Pharm. Bull. 46, 1248–1253 (1998)CrossRefGoogle Scholar
  8. 8.
    Jeong, K.-S., Hahn, K.-M., Cho, Y.L.: Molecular receptor for binding quaternary ammonium salts and a large anion effect on the complexation. Tetrahedron Lett. 39, 3779–3782 (1998)CrossRefGoogle Scholar
  9. 9.
    Ito, K., Miki, H., Ohba, Y.: Interaction between acyclic phenol-formaldehyde oligomers and quaternary ammonium ions. Yakugaku Zasshi 122, 413–417 (2002)CrossRefGoogle Scholar
  10. 10.
    Smith, D.K.: Rapid NMR screening of chloride receptors: uncovering catechol as a useful anion binding motif. Org. Biomol. Chem. 1, 3874 (2003)CrossRefGoogle Scholar
  11. 11.
    Ito, K., Nagase, K., Morohashi, N., Ohba, Y.: Interaction between quaternary ammonium ions and dideptides: positive anion allosteric effect. Chem. Pharm. Bull. 53, 90–94 (2005)CrossRefGoogle Scholar
  12. 12.
    Ito, K., Nishiki, M., Ohba, Y.: Interaction between biphenols and anions: selective receptor for dihydrogen phosphate. Chem. Pharm. Bull. 53, 1352–1354 (2005)CrossRefGoogle Scholar
  13. 13.
    Kondo, S., Suzuki, T., Toyama, T., Yano, Y.: Anion recognition by 1,3-benzenedisulfonamide derivatives bearing phenolic hydroxy groups in MeCN-d 3. Bull. Chem. Soc. Jpn. 78, 1348–1350 (2005)CrossRefGoogle Scholar
  14. 14.
    Ito, K., Takahashi, M., Hoshino, T., Nishiki, M., Ohba, Y.: Study on host-guest complexation of anions based on 2,2′-dihydroxyl-1,1′- binaphtalene derivatives. Lett. Org. Chem. 3, 735–740 (2006)CrossRefGoogle Scholar
  15. 15.
    Winstanley, K.J., Sayer, A.M., Smith, K.D.: Anion binding by catechols an NMR, optical and electrochemical study. Org. Biomol. Chem. 4, 1760–1767 (2007)CrossRefGoogle Scholar
  16. 16.
    Winstanley, K.J., Smith, D.K.: Ortho-Substituted catechol derivatives: the effect of intramolecular hydrogen bonding pathways on chloride anion recognition. J. Org. Chem. 72, 2803–2815 (2007)CrossRefGoogle Scholar
  17. 17.
    Stork, G., White, W.N.: The stereochemistry of the SN2′ reaction. I. Preparation of pure trans-6-alkyl-2-cyclohexen-1-ols. J. Am. Chem. Soc. 78, 4604–4608 (1956)CrossRefGoogle Scholar
  18. 18.
    Chasar, D.W.: A calix[4]arene type molecule and its hydrate. J. Org. Chem. 50, 545–546 (1985)CrossRefGoogle Scholar
  19. 19.
    Haghbeen, K., Tan, E.W.: Facile synthesis of catechol azo dyes. J. Org. Chem. 63, 4593–4594 (1998)CrossRefGoogle Scholar
  20. 20.
    Ito, K., Ohba, Y., Shinagawa, E., Nakayama, S., Takahashi, S., Honda, K., Nagafuji, H., Suzuki, A., Sone, T.: Syntheses and properties of tetraaza-, diaza-, tetraoxa- and dioxa-metacyclophanes. J. Heterocycl. Chem. 37, 1479–1489 (2000)CrossRefGoogle Scholar
  21. 21.
    Casiraghi, G., Casnati, G., Cornia, M.: Regiospecific reactions of phenol salts: reaction-pathways of alkylphenoxy-magnesium halide with triethylorthoformate. Tetrahedron Lett. 9, 679–682 (1973)CrossRefGoogle Scholar
  22. 22.
    Dinger, M.B., Scott, M.J.: Extended structures built on a triphenoxymethane platform C3-symmetric, conformational mimics of calix[n]arenes. Eur. J. Org. Chem. 39, 2467–2478 (2000)CrossRefGoogle Scholar
  23. 23.
    Ogoshi, H., Hayashi, T.: Bioorganic Chemistry. In: Iguchi, H. (ed.) Encyclopedia of Experimental Chemistry, vol. 27, pp. 19–25. The Chemical society of Japan, Maruzen Co Ltd, Tokyo (1991)Google Scholar
  24. 24.
    Hirose, K.: A practical guide for the determination of binding constants. J. Incl. Phenom. Macrocycl. Chem. 39, 193–209 (2001)CrossRefGoogle Scholar
  25. 25.
    Hirose, K.: Determination of Binding Constants. In: Schalley, C.A. (ed.) Analytical Methods in Supramolecular Chemistry, pp. 17–54. Wiley-VCH, Weinheim (2007)Google Scholar
  26. 26.
    Relles, H.R.: Substituent effects on hydrogen bonsing of monosubstituted phenols to chloride anion. J. Org. Chem. 35, 4280–4282 (1970)CrossRefGoogle Scholar
  27. 27.
    Bacelon, P., Corest, J., De Loze, C.: Phenol solvation and state of aggregation of tetraethylammonium halides in carbon tetrachloride. Far and mid infrared study. Chem. Phys. Lett. 32, 458–461 (1975)CrossRefGoogle Scholar
  28. 28.
    Rulinda, J.B., Zeegers-Huyskens, Th: Infrared spectrometric study on the interaction between tetraalkylammonium- or trialkylammonium halides and some phenol derivatives. Spectrosc. Lett. 12, 33–43 (1979)CrossRefGoogle Scholar
  29. 29.
    Lee, D.Y., Singh, N., Kim, M.J., Jang, D.O.: Chromogenic fluorescent recognition of iodide with benzimisazole-based tripodal receptor. Org. Lett. 13, 3024–3027 (2011)CrossRefGoogle Scholar
  30. 30.
    McDonald, K.P., Ramabhadran, R.O., Lee, S., Raghavachari, K., Flood, A.H.: Polarized naphthalimide CH donors enhance Cl- binding with an aryl-triazole receptor. Org. Lett. 13, 6260–6263 (2011)CrossRefGoogle Scholar
  31. 31.
    Nishio, M.: Introduction of Intermolecular Force in Organic Chemistry. Kodansha, Tokyo (2000)Google Scholar
  32. 32.
    Ito, K., Ohba, Y., Tamura, T., Ogata, T., Watanabe, H., Suzuki, Y., Hara, T., Morisawa, Y., Sone, T.: Synthesis and properties of calixarene analogs incorporating a thiophene unit in macrocyclic ring. J. Heterocycl. Chem. 38, 293–298 (2001)CrossRefGoogle Scholar
  33. 33.
    Ito, K., Noike, M., Kida, A., Ohba, Y.: Syntheses of chiral homoazacalix[4]arenes incorporating amino acid residues: molecular recognition for racemic quaternary ammonium ions. J. Org. Chem. 67, 7519–7522 (2002)CrossRefGoogle Scholar
  34. 34.
    Ito, K., Sato, T., Ohba, Y.: Synthesis and properties of bowl-shaped homotriazacalix[3 and 6] arenes and the acyclic analogues. J. Heterocycl. Chem. 40, 77–83 (2003)CrossRefGoogle Scholar
  35. 35.
    Nowick, J.S., Pairish, M., Lee, I.Q., Holmes, D.L., Ziller, J.W.: An extended β-strand mimic for a larger artificial β-sheet. J. Am. Chem. Soc. 119, 5413–5424 (1997)CrossRefGoogle Scholar
  36. 36.
    Baxter, N.J., Williamson, M.P.: Temperature dependence of 1H chemical shifts in proteins. J. Biomol. NMR 9, 359–369 (1997)CrossRefGoogle Scholar
  37. 37.
    Nishiki, M., Oi, W., Ito, K.: Anion binding properties of indolylmethanes. J. Incl. Phenom. Macrocycl. Chem. 61, 61–69 (2008)CrossRefGoogle Scholar
  38. 38.
    Gaussian 09, Revision B.01, Friscg, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, M., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J.; Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, Jr., J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N.: Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyenger, S.S., Tomasi, J., Cossi, M., Rega, N., MIllam, J.M., Klene, M., Knox, J.E.; Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J., Gaussian, Inc., Walling CT, 2010Google Scholar
  39. 39.
    Steiner, T.: Hydrogen-bond distances to halide ions in organic and organometallic crystal structures: up-to-date database study. Acta Crystallogr. B54, 456–463 (1998)Google Scholar
  40. 40.
    Steiner, T.: The hydrogen bond in the solid state. Angew. Chem. Int. Ed. 41, 48–76 (2002)CrossRefGoogle Scholar
  41. 41.
    Lee, D.H., Lee, K.H., Hong, J.-I.: An azophenol-based chromogenic anion sensor. Org. Lett. 3, 5–8 (2001)CrossRefGoogle Scholar
  42. 42.
    Lee, K.H., Lee, H.-Y., Lee, D.H., Hong, J.-I.: Fluoride-selective chromogenic sensors based on azophenol. Tetrahedron Lett. 42, 5447–5449 (2001)CrossRefGoogle Scholar
  43. 43.
    Lee, D.H., Lee, H.Y., Lee, K.H., Hong, J.-I.: Selective anion sensing based on a dual-chromophore approach. Chem. Commun. 13, 1188–1189 (2001)CrossRefGoogle Scholar
  44. 44.
    Lee, C., Lee, D.H., Hong, J.-I.: Colorimetric anion sensing by porphyrin-based anion receptors. Tetrahedron Lett. 42, 8665–8668 (2001)CrossRefGoogle Scholar
  45. 45.
    Lee, D.H., Im, J.H., Son, S.U., Chung, Y.K., Hong, J.-I.: An azophenol-based chromogenic pyrophosphate sensor in water. J. Am. Chem. Soc. 125, 7752–7753 (2003)CrossRefGoogle Scholar
  46. 46.
    Chen, C.-F., Chen, Q.-Y.: Azocalix[4]arene-based chromogenic anion probes. New J. Chem. 30, 143–147 (2006)CrossRefGoogle Scholar
  47. 47.
    Devaraj, S., Saravanakumar, D., Kandsawamy, M.: Dual chemosensing properties of new anthraquinone-based receptors toward fluoride ions. Tetrahedron Lett. 48, 3077–3081 (2007)CrossRefGoogle Scholar
  48. 48.
    Nestrerowicz, M., Korewa, R.: UV–Vis absorption spectra of 4-arylazophenolate anions and protonated 4-arylazophenols in various solvents. Pol. J. Chem. 55, 2605–2611 (1981)Google Scholar
  49. 49.
    Xie, H., Yi, S., Wu, S.: Study on host-guest complexation of anions based on tri-podal naphthylthiourea derivatives. J. Chem. Soc. Perkin Trans. 1 2, 2751–2754 (1999)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Department of Chemistry and Chemical Engineering, Graduate School of Science and EngineeringYamagata UniversityYonezawaJapan

Personalised recommendations