Skip to main content

Advertisement

Log in

Study of the interaction between modified cyclodextrin and octopriox : potential applications in drug delivery

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Host–guest interactions between the antifungal agent Octopirox® (Oc) and modified β-cyclodextrin-derivatives were studied using 1H- and 2D-ROESY NMR spectroscopy, Job-Plot and isothermal titration calorimetry (ITC). In addition to β-cyclodextrin (β-CD) a number of derivatives, namely randomly methacrylated β-cyclodextrin (RM-β-CD), mono-methacrylated β-cyclodextrin (MM-β-CD), randomly methylated β-cyclodextrin (RAMEB), hydroxypropyl-β-cyclodextrin (HP-β-CD) and randomly methacrylated hydroxypropyl-β-cyclodextrin (RM-HP-β-CD) were used. NMR data suggests the formation of highly ordered complexes, while ITC measurements allowed the identification of their stoichiometries and the thermodynamic data. To evaluate the possibility of retarded drug release from complexes prepared from polymeric materials like artificial nails, the complexes were polymerized with comonomers and subjected to aqueous extraction followed by quantification of Oc release by means of UV-spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Futterer, E.: Antidandruff hair tonic containing piroctone olamine. Cosmet. Toilet. 103, 49–52 (1988)

    CAS  Google Scholar 

  2. Dietrich, G., Bollert, V.: Praxisnahe Prüfmethode für Wirkstoffe gegen vermehrte Schuppung der Kopfhaut. Ärztliche Kosmetologie 10, 34–45 (1980)

    CAS  Google Scholar 

  3. Futterer, E.: Evaluation of efficacy of antidandruff agents. J. Soc. Cosmet. Chem. 32, 327–338 (1981)

    CAS  Google Scholar 

  4. Watanabe, Y., Yokoyama, M., Yamada, K., Arima, M., Hori, T., Sagai, M.: Clinical Evaluation of Hair Shampoo and Hair Rinse Containing Piroctone Olamine. J. Jpn. Soc. Cosmet. Sci. 6(2), 79–99 (1982)

    Google Scholar 

  5. Futterer, E.: Untersuchung zur Wirksamkeit löslicher Antischuppenwirkstoffe. Ärztliche Kosmetologie 15, 421–435 (1985)

    Google Scholar 

  6. Black, J.G., Kamat, V.B.: Percutaneous absorption of octopirox. Food Chem. Toxicol. 26, 53–58 (1988)

    Article  CAS  Google Scholar 

  7. Hashimoto, S., Uchino, N., Watari, Y.: Technological progress in formulation and manufacture of medicated shampoo. Fragr J. Special Issue 7, 62–67 (1986)

    Google Scholar 

  8. Schrader, K.: Comparative experimental research on dandruff through quantitative image analysis. J. Appl. Cosmetol. 4, 153–170 (1986)

    CAS  Google Scholar 

  9. Schrader, K., Bielefeldt, S.: Vergleichende experimentelle Untersuchungen von Kopfschuppen mit der quantitativen Bildanalyse. Parfümerie und Kosmetik 68, 72–80 (1987)

    Google Scholar 

  10. Myfungar® Nail polish; Polichem SA, Lugano (Switzerland); distributed by Taurus Pharma GmbH, Frankfurt/Main (Germany)

  11. Dubini, F., Belotti, M.G., Frangi, A., Monit, D., Saccomani, L.: In vitro antimycotic activity and nail permeation models of a piroctone olamine (octopirox) containing transungual water soluble technology. Arzneim.-Forsch./Drug Res. 55(8), 478–483 (2005)

    CAS  Google Scholar 

  12. Gröger, M., et. Al.: Cyclodextrine. http://www.science-forum.de/download/cyclodex.pdf. Accessed 1 Oct 2012

  13. Szejtli, J.: Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 98, 1743–1753 (1998)

    Article  CAS  Google Scholar 

  14. Ritter, H., Tabatabei, M.: Grüne Polymerchemie—polymerisationsverfahren in Wasser unter Verwendung von Cyclodextrinen. http://docserv.uni-duesseldorf.de/servlets/DerivateServlet/Derivate-809/pagesritter.pdf. Accessed 1 Oct 2012

  15. Forrest, M.L., Gabrielson, N., Pack, D.W.: Cyclodextrin–polyethylenimine conjugates for targeted in vitro gene delivery. Biotechnol. Bioeng. 89, 416–423 (2005)

    Article  CAS  Google Scholar 

  16. Kretschmann, O., Choi, S.W., Miyauchi, M., Tomatsu, I., Harada, A., Ritter, H.: Switchable hydrogels obtained by supramolecular cross-linking of adamantyl-containing LCST copolymers with cyclodextrin dimers. Angew. Chem. Int. Ed 45, 4361–4365 (2006)

    Article  Google Scholar 

  17. Kretschmann, O., Ritter, H.: Copolymerization of fluorinated monomers with hydrophilic monomers in aqueous solution in presence of cyclodextrin. Macromol. Chem. Phys. 207, 987–992 (2006)

    Article  CAS  Google Scholar 

  18. Antonietti, L., Aymonier, C., Schlotterbeck, U., Garamus, V.M., Maksimova, T., Richtering, W., Mecking, S.: Core-shell-structured highly branched poly(ethylenimine amide)s: synthesis and structure. Macromolecules 38, 5914–5920 (2005)

    Article  CAS  Google Scholar 

  19. Maciollek, A., Munteanu, M., Ritter, H.: New generation of polymeric drugs: copolymer from NIPAAM and cyclodextrin methacrylate containing supramolecular-attached antitumor derivative. Macromol. Chem. Phys. 211, 245–249 (2010)

    Article  CAS  Google Scholar 

  20. Zhou, J., Ritter, H.: Cyclodextrin functionalized polymers as drug delivery systems. Polym. Chem. 1, 1552–1559 (2010)

    Article  CAS  Google Scholar 

  21. Valentino, J.S., Quanren, H.: Cyclodextrins. Toxicol. Pathol. 36, 30–42 (2008)

    Article  Google Scholar 

  22. Dos Santos, J.-F.R., Couceiro, R., Concheiro, A., Torres-Labandeira, J–.J., Alvarez-Lorenzo, A.: Poly(hydroxyethyl methacrylate-co-methacrylated-b-cyclodextrin) hydrogels: synthesis, cytocompatibility, mechanical properties and drug loading/release properties. Acta Biomater. 4, 745–755 (2008)

    Article  Google Scholar 

  23. Uekama, K.: Design and evaluation of cyclodextrin-based drug formulation. Chem. Pharm. Bull. 52, 900–915 (2004)

    Article  CAS  Google Scholar 

  24. Hoare, T.R., Kohane, D.S.: Hydrogels in drug delivery: progress and challenges. Polymer 49, 1993–2007 (2008)

    Article  CAS  Google Scholar 

  25. Bouchemal, K.: Drug Discov Today 13, 960–972 (2008)

    Article  CAS  Google Scholar 

  26. Denadai, A.M.L., Santoro, M.M., Da Silva, L.H., Viana, A.T., Dos Santos, R.A.S., Sinisterra, R.D.J.: Self-assembly Characterization of the β-cyclodextrin and hydrochlorothiazide system: NMR, phase solubility, ITC and QELS. Inclusion Phenom. Macrocyl. Chem. 55, 41–49 (2006)

    Article  CAS  Google Scholar 

  27. Teixeira, L.R., Sinisterra, R.D., Vieira, R.P., Scarlatelli-Lima, A., Moraes, M.F.D., Doretto, M.C., Denadai, A.M., Beraldo, H.: An Inclusion compound of the anticonvulsant sodium valproate into a-cyclodextrin: physico-chemical haracterization. J. Inclusion Phenom. Macrocycl. Chem. 54, 133–138 (2006)

    Article  CAS  Google Scholar 

  28. Schneider, H.J., Hacket, F., Rudiger, V., Ikeda, H.: NMR studies of cyclodextrins and cyclodextrin complexes. Chem. Rev. 98, 1755–1785 (1998)

    Article  CAS  Google Scholar 

  29. Rahman, A.: One and two dimensional NMR spectroscopy, 1st edn. Elsevier, New York (1989)

    Google Scholar 

  30. Ohga, K., Takashima, Y., Takashima, H., Kawaguchi, Y., Yamaguchi, H., Harada, A.: Preparation of supramolecular polymers from a cyclodextrin dimer and ditopic guest molecules: control of structure by linker flexibility. Macromolecules 38, 5897–5904 (2005)

    Article  CAS  Google Scholar 

  31. Kretschmann, O.: Diss., Assoziative Hydrogele und thermosensitive Polymer-Einschlussverbindungen auf Basis von adamantylhaltigen Polymeren und Cyclodextrinen, 95–98 (2006)

  32. Loftsson, T., Brewster, M.E.: Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. J. Pharm. Sci. 85, 1017–1025 (1996)

    Article  CAS  Google Scholar 

  33. Thompson, D.O.: Cyclodextrins–enabling excipients: their present and future use in pharmaceuticals. Crit. Rev. Ther. Drug Carrier Syst. 14, 1–104 (1997)

    Article  CAS  Google Scholar 

  34. Rekharsky, M.V., Inoue, Y.: Complexation thermodynamics of cyclodextrins. Chem. Rev. 98, 1875–1917 (1998)

    Article  CAS  Google Scholar 

  35. Rekharsky, M.V., Yamamura, H., Kawai, M., Inoue, Y.: Complexation and chiral recognition thermodynamics of gamma-cyclodextrin with N-acetyl- and N-carbobenzyloxy-dipeptides possessing two aromatic rings. J. Org. Chem. 68, 5228–5235 (2003)

    Article  CAS  Google Scholar 

  36. Praefcke, G.J.K.: Isotherme Titrationskalorimetrie (ITC) zur Charakterisierung biomolekularer Wechselwirkungen. BIOspektrum 1, 44–47 (2005)

    Google Scholar 

  37. Turnbull, W.B., Daranas, A.H.: On the value of c: can low affinity systems be studied by isothermal titration calorimetry? J. Am. Chem. Soc. 125, 14859–14866 (2003)

    Article  CAS  Google Scholar 

  38. Harrison, J.C.: Cyclodextrin–adamantanecarboxylate inclusion complexes: a model system for the hydrophobic effect. Biopolymers 21, 1153–1166 (1982)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Ritter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dollendorf, C., Maier, M., Janda, R. et al. Study of the interaction between modified cyclodextrin and octopriox : potential applications in drug delivery. J Incl Phenom Macrocycl Chem 77, 351–361 (2013). https://doi.org/10.1007/s10847-012-0254-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-012-0254-1

Keywords

Navigation