Advertisement

Cyclodextrin-based polyrotaxanes

  • Tomasz Girek
Review Article

Abstract

In the paper cyclodextrin-based (CD) polyrotaxanes are presented in the aspect of their syntheses and properties allowing various applications. The text consists of four parts, which describe CD-based polyrotaxanes with threads containing poly(ethylene oxide), poly (4,4′-diphenylenevinylene), polyfluorene and other chains. Conclusion shows new trends connected with this theme.

Keywords

Cyclodextrin Polymer Polyrotaxane Ring Thread 

References

  1. 1.
    Harada, A., Takashima, Y., Yamaguchi, H.: Cyclodextrin-based supramolecular polymers. Chem. Soc. Rev. 38(4), 875–882 (2009)CrossRefGoogle Scholar
  2. 2.
    Frampton, M.J., Anderson, H.L.: Insulated molecular wires. Angew. Chem. Int. Ed. 46(7), 1028–1064 (2007)CrossRefGoogle Scholar
  3. 3.
    Wenz, G., Han, B.-H., Mueller, A.: Cyclodextrin rotaxanes and polyrotaxanes. Chem. Rev. 106(3), 782–817 (2006)CrossRefGoogle Scholar
  4. 4.
    Inoue, Y., Ye, L., Ishihara, K., Yui, N.: Preparation and surface properties of polyrotaxane-containing tri-block copolymers as a design for dynamic biomaterials. Colloids Surf. B 89, 223–227 (2012)CrossRefGoogle Scholar
  5. 5.
    Brovelli, S., Cacialli, F.: Optical and electroluminescent properties of conjugated polyrotaxanes. Funct. Supramol. Archit. 2, 919–960 (2011)Google Scholar
  6. 6.
    Hyun, H., Yui, N.: Ligand accessibility to receptor binding sites enhanced by movable polyrotaxanes. Macromol. Biosci. 11(6), 765–771 (2011)CrossRefGoogle Scholar
  7. 7.
    Oddy, F.E., Brovelli, S., Stone, M., Klotz, E.J.F., Cacialli, F., Anderson, H.L.: Influence of cyclodextrin size on fluorescence quenching in conjugated polyrotaxanes by methyl viologen in aqueous solution. J. Mater. Chem. 19(18), 2846–2852 (2009)CrossRefGoogle Scholar
  8. 8.
    Wang, J., Wang, P.-J., Ye, L., Zhang, A.-Y., Feng, Z.-G.: Residing states of β-cyclodextrins in solid-state polyrotaxanes comprising pluronic F127 and PNIPAAm. Polymer 52(23), 5362–5368 (2011)CrossRefGoogle Scholar
  9. 9.
    Hatakeyama, H., Akita, H., Harashima, H.: A multifunctional envelope type nano device (MEND) for gene delivery to tumours based on the EPR effect: a strategy for overcoming the PEG dilemma. Adv. Drug Deliv. 63(3), 152–160 (2011)CrossRefGoogle Scholar
  10. 10.
    Zhu, L., Lu, M., Zhang, Q., Qu, D., Tian, H.: Construction of polypseudorotaxane from low-molecular weight monomers via dual noncovalent interactions. Macromolecules 44(11), 4092–4097 (2011)CrossRefGoogle Scholar
  11. 11.
    Shi, J., Chen, Y., Wang, Q., Liu, Y.: Construction and efficient radical cation stabilization of cyclodextrin/aniline polypseudorotaxane and its conjugate with carbon nanotubes. Adv. Mater. 22(23), 2575–2578 (2010)CrossRefGoogle Scholar
  12. 12.
    Noguerias-Nieto, L., Sobarzo-Sánchez, E., Gómez-Amoza, J.L., Otero-Espinar, J.: Competitive displacement of drugs from cyclodextrin inclusion complex by polypseudorotaxane formation with poloxamer: implications in drug solubilization and delivery. Eur. J. Pharm. Biopharm. 80, 585–595 (2012)CrossRefGoogle Scholar
  13. 13.
    Otero-Espinar, F.J., Torres-Labandeira, J.J., Alvarez-Lorenzo, C., Blanco-Mendez, J.: Cyclodextrin in drug delivery systems. J. Drug Deliv. Sci. Technol. 20(4), 289–301 (2010)Google Scholar
  14. 14.
    Motoyama, K., Hayashida, K., Higashi, T., Arima, H.: Polypseudorotaxanes of pegylated α-cyclodextrin/polyamidoamine dendrimer conjugate with cyclodextrins as a sustained release system for DNA. Bioorg. Med. Chem. 20(4), 1425–1433 (2012)CrossRefGoogle Scholar
  15. 15.
    Motoyama, K., Hayashida, K., Arima, H.: Potential use of polypseudorotaxanes of pegylated polyamidoamine dendrimer with cyclodextrins as novel sustained release systems for DNA. Chem. Pharm. Bull. 59(4), 476–479 (2011)CrossRefGoogle Scholar
  16. 16.
    Girek, T., Goszczyński, T., Girek, B., Ciesielski, W., Boratyński, J., Rychter, P.: β-Cyclodextrin/protein conjugates as a innovative drug systems: synthesis and MS investigation. J. Incl. Phenom. Macrocycl. Chem. doi: 10.1007/s10847-012-0132-x
  17. 17.
    Girek, T.: Cyclodextrin-based rotaxanes. J. Incl. Phenom. Macrocycl. Chem. 74(1–4), 1–21 (2012)CrossRefGoogle Scholar
  18. 18.
    Girek, T., Ciesielski, W.: Polymerization of β-cyclodextrin with maleic anhydride along with thermogravimetric study of polymers. J. Incl. Phenom. Macrocycl. Chem. 69(3–4), 445–451 (2011)CrossRefGoogle Scholar
  19. 19.
    Ciesielski, W., Girek, T.: Study of thermal stability of β-cyclodextrin/metal complexes in the aspect of their future applications. J. Incl. Phenom. Macrocycl. Chem. 69(3–4), 461–467 (2011)CrossRefGoogle Scholar
  20. 20.
    Kozlowski, C.A., Walkowiak, W., Girek, T.: Modified cyclodextrin polymers as selective ion carriers for Pb(II) separation across plasticized membranes. J. Membr. Sci. 310(1–2), 312–320 (2008)CrossRefGoogle Scholar
  21. 21.
    Musiol, R., Girek, T.: Inclusion-dependent mechanism of modification of cyclodextrins with heterocycles. Cent. Eur. J. Chem. 3(4), 742–746 (2005)CrossRefGoogle Scholar
  22. 22.
    Yang, Ch., Li, J.: Thermorespnsive behavior of cationic polyrotaxane composed of multiple pentaethylenehexamine-grafted α-cyclodextrin threated on poly(propylene oxide)-poly(ethylene oxide)-poly(propylene oxide) triblock copolymer. J. Phys. Chem. B. 113(3), 682–690 (2009)CrossRefGoogle Scholar
  23. 23.
    Przybylski, C., Jarroux, N.: Analysis of a polydisperse polyrotaxane based on poly(ethylene oxide) and α-cyclodextrins using nanoelectrospray and LTQ-orbitrap. Anal. Chem. 83(22), 8460–8467 (2011)CrossRefGoogle Scholar
  24. 24.
    Imran, A.-B., Seki, T., Kataoka, T., Kidowaki, M., Ito, K., Takeoka, Y.: Fabrication of mechanically improved hydrogels using a movable cross-linker based on vinyl modified polyrotaxane. Chem. Commun. 41, 5227–5229 (2008)CrossRefGoogle Scholar
  25. 25.
    Sun, H., Han, J., Gao, C.: High yield production of high molecular weight poly(ethylene glycol)/α-cyclodextrin polyrotaxanes by aqueous one-pot approach. Polymer 53(14), 2884–2889 (2012)CrossRefGoogle Scholar
  26. 26.
    Wu, J.Y., He, H.K., Gao, C.: β-Cyclodextrin-capped polyrotaxanes: one-pot facile synthesis via click chemistry and use as templates for platinum nanowires. Macromolecules 43(5), 2252–2260 (2010)CrossRefGoogle Scholar
  27. 27.
    Nakazano, K., Takashima, T., Arai, T., Koyama, Y., Takata, T.: High-yield one-pot synthesis of permethylated α-cyclodextrin-based polyrotaxane in hydrocarbon solvent through an efficient heterogeneous reaction. Macromolecules 43(2), 691–696 (2010)CrossRefGoogle Scholar
  28. 28.
    Arai, T., Hayashi, M., Takagi, N., Takata, T.: One-pot synthesis of native and permethylated α-cyclodextrin-containing polyrotaxanes in water. Macromolecules 42(6), 1881–1887 (2009)CrossRefGoogle Scholar
  29. 29.
    Soliman, M., Allen, S., Davies, M.C., Alexander, C.: Responsive polyelectrolyte complexes for triggered release of nucleic acid therapeutics. Chem. Commun. 46, 5421–5433 (2010)CrossRefGoogle Scholar
  30. 30.
    Davis, M.E., Zuckerman, J.E., Choi, C.H.J., Seligson, D., Tolcher, A., Alabi, C.A., Yen, Y., Heidel, J.D., Ribas, A.: Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464(7291), 1067–1070 (2010)CrossRefGoogle Scholar
  31. 31.
    Thiele, C., Auerbach, D., Jung, G., Wenz, G.: Inclusion of chemotherapeutic agents in substituted β-cyclodextrin derivatives. J. Incl. Phenom. Macrocycl. Chem. 69(3–4), 303–307 (2011)CrossRefGoogle Scholar
  32. 32.
    Thiele, C., Auerbach, D., Jung, G., Qiong, L., Schneider, M., Wenz, G.: Nanoparticles of anionic starch and cationic cyclodextrin derivatives for the targeted delivery of drugs. Polym. Chem. 2(1), 209–215 (2010)CrossRefGoogle Scholar
  33. 33.
    Wenz, G.: Cyclodextrin polyrotaxanes assembled from a molecular construction kit in aqueous solution. J. Polym. Sci. Part A Polym. Chem. 47(23), 6333–6341 (2009)CrossRefGoogle Scholar
  34. 34.
    Alzabut, T., Keil, M., Ellis, J., Alexander, C., Wenz, G.: Transfection of luciferase DNA into various cells by cationic cyclodextrin polyrotaxanes derived from ionene-11. J. Mater. Chem. 22(17), 8558–8565 (2012)CrossRefGoogle Scholar
  35. 35.
    Ooya, T., Choi, H.S., Yamashita, A., Yui, N., Sugaya, Y., Kano, A., Maruyama, A., Akita, H., Ito, R., Kogure, K., Harashima, J.: Biocleavable polyrotaxane-plasmid DNA polyplex for enhanced gene delivery. J. Am. Chem. Soc. 128(12), 3852–3853 (2006)CrossRefGoogle Scholar
  36. 36.
    Latini, G., Parrot, L.-J., Brovelli, S., Frampton, M.J., Anderson, H.L., Cacialli, F.: Cyclodextrin-threaded conjugated polyrotaxanes for organic electronics: the influence of the counter cations. Adv. Funct. Mater. 18(16), 2419–2427 (2008)CrossRefGoogle Scholar
  37. 37.
    Taniguchi, M., Nojima, Y., Yokota, K., Terao, J., Sato, K., Kambe, N., Kawai, T.: J. Am. Chem. Soc. 128(47), 15062–15063 (2006)CrossRefGoogle Scholar
  38. 38.
    Brovelli, S., Guan, H., Winroth, G., Fenwick, O., Di Stasio, F., Daik, R., Feast, W.J., Meinardi, F., Cacialli, F.: White luminescence from single-layer devices of nonresonant polymer blends. Appl. Phys. Lett. 96(21), 213301 (2010)CrossRefGoogle Scholar
  39. 39.
    Brovelli, S., Meinardi, F., Winroth, G., Fenwick, O., Sforazzini, G., Frampton, M.J., Zalewski, L., Levitt, J.A., Marinello, F., Schiavuta, P., Suhling, K., Anderson, H.L., Cacialli, F.: White electroluminescence by supramolecular control of energy transfer in blends of organic-soluble encapsulated polyfluorenes. Adv. Mater. 20(2), 272–280 (2010)Google Scholar
  40. 40.
    Sugiyasu, K., Honsho, Y., Harrison, R.M., Sato, A., Yasuda, T., Seki, S., Takeuchi, M.: A self-threading polythiophene: defect-free insulated molecular wires endowed with long effective conjugation length. J. Am. Chem. Soc. 132(42), 14754–14756 (2010)CrossRefGoogle Scholar
  41. 41.
    Chen, Y.J., Wu, W., Pu, W.G., He, S.X.: Preparation and characterization of conjugated polypseudorotaxane poly(pyrrole/α-cyclodextrin). Int. J. Polym. Anal. Charact. 15(1), 43–53 (2010)CrossRefGoogle Scholar
  42. 42.
    Grigiras, M., Stafie, L.: Electrically insulated molecular wires. Supramol. Chem. 22(4), 237–248 (2010)CrossRefGoogle Scholar
  43. 43.
    Zalewski, L., Wykes, M., Brovelli, S., Bonini, M., Breiner, T., Kastler, M., Dotz, F., Beljonne, D., Anderson, H.L., Cacialli, F., Samori, P.: A conjugated thiophene-based rotaxane: synthesis, spectroscopy, and modeling. Chem. Eur. J. 16(13), 3933–3941 (2010)CrossRefGoogle Scholar
  44. 44.
    Farcas, A., Ghosh, I., Grigoras, V.C., Stoica, I., Peptu, C., Nau, W.M.: Effect of rotaxane formation on the photophysical, morphological, and adhesion properties of poly[2,7-(9,9-dioctylfluorene)-alt-(5,5′-bithiophene)] main-chain polyrotaxanes. Macromol. Chem. Phys. 212(10), 1022–1031 (2011)CrossRefGoogle Scholar
  45. 45.
    Farcas, A., Stoica, I., Stefanache, A., Peptu, C., Farcas, F., Marangoci, N., Sacarescu, L., Harabagiu, V., Guégan, P.: Surface properties of conjugates main-chain polyrotaxanes. Chem. Phys. Lett. 508(1–3), 111–116 (2011)CrossRefGoogle Scholar
  46. 46.
    Michels, J.J., O’Connell, M.J., Taylor, P.N., Wilson, J.S., Cacialli, F., Anderson, H.L.: Synthesis of conjugated polyrotaxanes. Chem.A Eur. J. 9(24), 6167–6176 (2003)CrossRefGoogle Scholar
  47. 47.
    Frampton, M.J., Sforazzini, G., Brovelli, S., Latini, G., Townsend, E., Wiliams, C.C., Charas, A., Zalewski, L., Kaka, N.S., Sirish, M., Parrott, L.J., Wilson, J.S., Cacialli, F., Anderson, H.L.: Synthesis and optoelectronc properties of nonpolar polyrotaxane insulated molecular wires with high solubility in organic solvents. Adv. Funct. Mater. 18(21), 3367–3376 (2008)CrossRefGoogle Scholar
  48. 48.
    Miyawaki, A., Miyauchi, M., Takashima, Y., Yamaguchi, H., Harada, A.: Formation of supramolecular isomers; poly[2]rotaxane and supramolecular assembly. Chem. Commun. 4, 456–458 (2008)CrossRefGoogle Scholar
  49. 49.
    Farcas, A., Jarroux, N., Ghosh, I., Guégan, P., Nau, W.M., Harabagiu, V.: Polyrotaxanes of pyrene-triazole conjugated azomethine and α-cyclodextrin with high fluorescence properties. Macromol. Chem. Phys. 210(17), 1440–1449 (2009)CrossRefGoogle Scholar
  50. 50.
    Terao, J., Tsuda, S., Tanaka, Y., Okoshi, K., Fujihara, T., Tsuji, Y., Kambe, N.: Synthesis of organic-soluble conjugated polyrotaxanes by polymerization of linked rotaxanes. J. Am. Chem. Soc. 131(44), 16004–16005 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Institute of Chemistry, Environmental Protection and BiotechnologyJan Dlugosz UniversityCzestochowaPoland

Personalised recommendations