Advertisement

Cytosine: para-sulphonato-calix[4]arene assemblies: in solution, in the solid-state and on the surface of hybrid silver nanoparticles

  • Yannick Tauran
  • Moez Rhimi
  • Ryohei Ueno
  • Marie Grosso
  • Arnaud Brioude
  • Erwann Janneau
  • Kinga Suwinska
  • Rima Kassab
  • Patrick Shahgaldian
  • Alessandro Cumbo
  • Bernard Fenet
  • Beomjoon Kim
  • Anthony W. Coleman
Original Article

Abstract

The molecular recognition by para-sulphonato-calix[4]arene of cytosine, occurs in solution, in the solid-state and by assembly on the surface of para-sulphonato-calix[4]arene capped silver nanoparticles. Each of these states shows different modes of assembly; in solution a 1:1 complex is formed; in the solid state a 4:1 assembly exists, however some of the cytosine molecules are present as space fillers and do not participate in the host (guest complexes, finally on the surface of the hybrid silver/para-sulphonato-calix[4]arene nanoparticles a 2:1 cytosine/para-sulphonato-calix[4]arene assembly is observed. The assembly processes have been studied by DOSY NMR, fluorescence spectroscopy, Dynamic Light Scattering (DLS), Single Crystal Solid State Diffraction, Visible Spectroscopy and Electron Microscopy. The results demonstrate how cytosine initiates the aggregation of the hybrid silver/para-sulphonato-calix[4]arene hybrid nanoparticles.

Keywords

Cytosine Para-sulphonato-calix[4]arene Hybrid silver nanoparticles Solution Solid-state Colloids 

Notes

Acknowledgments

One of us, Y.T., acknowledges support from the Department of Chemistry and Biochemistry, University of Lyon 1. We thank Professor Shoji Takeuchi, his lab members and Dr. Yannick Rondelez for fluorescence experiments.

Supplementary material

10847_2012_235_MOESM1_ESM.doc (1.2 mb)
Supplementary material 1 (DOC 1222 kb)

References

  1. 1.
    He, W., Huang, C.Z., Li, Y.F., Xie, J.P., Yang, R.G., Zhou, P.F., Wang, J.: One-step label-free optical genosensing system for sequence-specific DNA related to the human immunodeficiency virus based on the measurements of light scattering signals of gold nanorods. Anal. Chem. 80, 8424–8430 (2008)CrossRefGoogle Scholar
  2. 2.
    Storhoff, J.J., Elghanian, R., Mucic, R.C., Mirkin, C.A., Letsinger, R.L.: One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J. Am. Chem. Soc. 120, 1959–1964 (1998)CrossRefGoogle Scholar
  3. 3.
    Gutsche, C.D.: Calixarenes: An Introduction, 2nd edn. The Royal Society of Chemistry, Cambridge (2008)Google Scholar
  4. 4.
    Danylyuk, O., Suwinska, K.: Solid-state interactions of calixarenes with biorelevant molecules. Chem. Commun. 39, 5799–5813 (2009)CrossRefGoogle Scholar
  5. 5.
    Perret, F., Lazar, A.N., Coleman, A.W.: Biochemistry of the para-sulphonato-calix[n]arenes. Chem. Commun. 23, 2425–2438 (2006)CrossRefGoogle Scholar
  6. 6.
    Perret, F., Coleman, A.W.: Biochemistry of anionic calix[n]arenes. Chem. Commun. 47, 7303–7319 (2011)CrossRefGoogle Scholar
  7. 7.
    Rodik, R.V., Boyko, V.I., Kalchenko, V.I.: Calixarenes in bio-medical researches. Curr. Med. Chem. 16, 1630–1655 (2009)CrossRefGoogle Scholar
  8. 8.
    Atwood, J.L., Barbour, L.J., Dawson, E.S., Junk, P.C., Kienzle, J.: X-ray structure of the water soluble adeninium para-sulfonatocalix[4]arene which displays cationic and anionic bilayers. Supramol. Chem. 7, 271–274 (1996)CrossRefGoogle Scholar
  9. 9.
    Nichols, P.J., Makha, M., Raston, C.L.: Confinement of nucleic acid bases and related compounds using tetra-para-sulfonatocalix[4] arene. Cryst. Growth Des. 6, 1161–1167 (2006)CrossRefGoogle Scholar
  10. 10.
    Xiong, D., Li, H.: Colorimetric detection of pesticides based on calixarene modified silver nanoparticles in water. Nanotechnology (2008). doi: 10.1088/0957-4484/19/46/465502
  11. 11.
    Xiong, D., Chen, M., Li, H.: Synthesis of para-sulfonatocalix[4]arene-modified silver nanoparticles as colorimetric histidine probes. Chem. Commun. 7, 880–882 (2008)CrossRefGoogle Scholar
  12. 12.
    Tauran, Y., Grosso, M., Brioude, A., Kassab, R., Coleman, A.W.: Colourimetric and spectroscopic discrimination between nucleotides and nucleosides using para-sulphonato-calix[4]arene capped silver nanoparticles. Chem. Commun. 47, 10013–10015 (2011)CrossRefGoogle Scholar
  13. 13.
    Coleman, A.W., Jebors, S., Cecillon, S., Perret, P., Garin, D., Marti-Battle, D., Moulin, M.: Toxicity and biodistribution of para-sulphonato-calix[4]arene in mice. New J. Chem. 32, 780–782 (2008)CrossRefGoogle Scholar
  14. 14.
    Tan, Y.W., Wang, Y., Jiang, L., Zhu, D.B.: Thiosalicylic acid-functionalized silver nanoparticles synthesized in one-phase system. J. Colloid Interface Sci. 249, 336–345 (2002)CrossRefGoogle Scholar
  15. 15.
    Benesi, H., Hildebrand, J.: A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J. Am. Chem. Soc. 71, 2703–2707 (1949)CrossRefGoogle Scholar
  16. 16.
    Schalley, C.: Analytical Methods in Supramolecular Chemistry. Wiley-VCH Verlag Gmbh, Weinheim (2007)Google Scholar
  17. 17.
    Cameron, K.S., Fielding, L.: NMR diffusion spectroscopy as a measure of host–guest complex association constants and as a probe of complex size. J. Org. Chem. 66, 6891–6895 (2001)CrossRefGoogle Scholar
  18. 18.
    Dalgarno, S.J., Fisher, J., Raston, C.L.: Interplay of para-sulfonatocalix[4]arene and crown ethers en route to molecular capsules and “Russian dolls”. Chem. Eur. J. 12, 2772–2777 (2006)CrossRefGoogle Scholar
  19. 19.
    Coleman, A.W., Bott, S.G., Morley, S.D., Means, C.M., Robinson, K.D., Zhang, H.M., Atwood, J.L.: Novel layer structure of sodium calix[4]arenesulfonate complexes – a class of organic clay mimics. Angew. Chem. Int. Ed. 2, 1361–1362 (1988)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Yannick Tauran
    • 1
    • 2
  • Moez Rhimi
    • 3
  • Ryohei Ueno
    • 4
  • Marie Grosso
    • 1
  • Arnaud Brioude
    • 1
  • Erwann Janneau
    • 5
  • Kinga Suwinska
    • 6
    • 7
  • Rima Kassab
    • 8
  • Patrick Shahgaldian
    • 9
  • Alessandro Cumbo
    • 9
  • Bernard Fenet
    • 10
  • Beomjoon Kim
    • 2
    • 4
  • Anthony W. Coleman
    • 1
  1. 1.LMI, CNRS UMR 5615Univ. Lyon 1VilleurbanneFrance
  2. 2.LIMMS/CNRS-IIS (UMI 2820)University of TokyoTokyoJapan
  3. 3.BMSSI UMR5086-CNRS, Institut de Biologie Et Chimie des Proteines FR3302Univ. Lyon 1LyonFrance
  4. 4.CIRMM, Institute of Industrial ScienceUniversity of TokyoTokyoJapan
  5. 5.Centre de diffractométrie Henri LongchambonUniv. Lyon 1VilleurbanneFrance
  6. 6.Institute of Physical ChemistryPolish Academy of SciencesWarszawaPoland
  7. 7.Faculty of Biology and Environmental Sciences, Cardinal StefanWyszynski University in WarsawWarszawaPoland
  8. 8.Department of Chemistry, Faculty of SciencesUniversity of BalamandTripoliLebanon
  9. 9.Fachhochschule NordwestschweizHochschule für LifesciencesMuttenzSwitzerland
  10. 10.Centre Commun RMNUniv. Lyon 1VilleurbanneFrance

Personalised recommendations