Advertisement

Physical properties and inclusion interactions of new stilbazolium salts: experimental versus theoretical study

  • Cornelia Stolle
  • Bojidarka Ivanova
  • Michael Spiteller
Original Article
  • 208 Downloads

Abstract

The experimental and theoretical spectroscopic and spectrometric elucidation in solid-state and gas-phase on the interacting ionic species of applied oriented synthetic derivatives on the base of the stilbazolium salts as molecular template was reported. The correlation between the molecular structure, and vibrational properties within THz-regime (10-0.3 THz) was performed. The collective vibrations, and gas-phase stabilized ionic species were comprehensive studied by the Raman spectroscopy and matrix-assisted laser desorption/ionization mass spectrometry, using the embedded organic dyes in host matrixes. The performed solid-state quantum chemical calculations contributed to further understanding of the nature of the guest–host interacting systems as well as to explain the observed optical phenomena within the THz-region.

Keywords

Matrix-embedded organic dyes Physical properties Mass spectrometry Quantum chemistry 

Notes

Acknowledgments

The authors thank the Deutscher Akademischer Austausch Dienst (DAAD), for a grant within the priority program “Stability Pact South-Eastern Europe” and gratefully thank the Deutsche Forschungsgemeinschaft (DFG) for Grants SPP 255/21-1 and SPP/22-1. The authors also thank the central instrumental laboratories for structural analysis at Technical University Dortmund (TUD, Germany) and the analytical and computational laboratories at the Institute of Environmental Research (INFU) at the TUD.

References

  1. 1.
    Bosshard, Ch., Hulliger, J., Florsheimer, M., Günter, P.: Organic Nonlinear Optical Materials, Advances in Nonlinear Optics. Gordon and Breach Science Publishers S.A., Basel (1993)Google Scholar
  2. 2.
    Zyss, J. (ed.): Molecular Nonlinear Optics: Material Physics and Devices, Chap 4. Academic Press INC, San Diego (1993)Google Scholar
  3. 3.
    Nalwa, H., Watanabe, T., Miyata, S. (eds.): Nonlinear Optics of Organic Molecules and Polymers, p. 89. CRC Press, Boca Raton (1997)Google Scholar
  4. 4.
    Coe, B.: Switchable nonlinear optical metallochromophores with pyridinium electron acceptor groups. Acc. Chem. Rev. 39, 383 (2006)CrossRefGoogle Scholar
  5. 5.
    Reetz, M., Hoger, S., Harris, K.: Proton-transfer-dependent reversible phase changes in the 4,4′-bipyridinium salt of squaric acid. Angew. Chem. Int. Ed. 33, 181 (1994)CrossRefGoogle Scholar
  6. 6.
    Würthner, F., Schmidt, J., Stolte, M., Wortmann, R.: Hydrogen-bond-directed head-to-tail orientation of dipolar merocyanine dyes: A strategy for the design of electrooptical materials. Angew. Chem. Int. Ed. 45, 3842 (2006)CrossRefGoogle Scholar
  7. 7.
    Wolff, J., Wortmann, R.: Organic materials for second-order non-linear optics. Adv. Phys. Org. Chem. 32, 121 (1999)CrossRefGoogle Scholar
  8. 8.
    Marder, S., Perry, J., Schaefer, W.: Synthesis of organic salts with large second-order optical nonlinearities. Science 245, 626 (1989)CrossRefGoogle Scholar
  9. 9.
    Papadopoulos, M., Leszczynski, J., Sadlej, J.: Nonlinear Optical Properties of Matter: From Molecules to a Condensed Phases. Kluwer, Dordrecht (2006)Google Scholar
  10. 10.
    Coe, B., Fielden, J., Foxon, S., Harris, J., Helliwell, M., Brunschwig, B., Asselberghs, C.I., Garin, J., Orduna, J.: Diquat derivatives: Highly active, two-dimensional nonlinear optical chromophores with potential redox switchability. J. Am. Chem. Soc. 132, 10498 (2010)CrossRefGoogle Scholar
  11. 11.
    Wampler, R., Moad, A., Moad, C., Heiland, R., Simpson, G.: Visual methods for interpreting optical nonlinearity at the molecular level. Acc. Chem. Res. 40, 953 (2007)CrossRefGoogle Scholar
  12. 12.
    Sullivan, P., Dalton, L.: Theory-inspired development of organic electro-optic materials. Acc. Chem. Res. 43, 10 (2010)CrossRefGoogle Scholar
  13. 13.
    Ward, M.: Chemistry: Molecular socks in a drawer. Nature 449, 149 (2007)CrossRefGoogle Scholar
  14. 14.
    Haag, R., Vögtle, F.: Highly branched macromolecules at the interface of chemistry, biology, physics, and medicine. Angew. Chem. Int. Ed. 43, 272 (2004)CrossRefGoogle Scholar
  15. 15.
    Holman, K., Pivovar, A., Ward, M.: Engineering crystal symmetry and polar order in molecular host frameworks. Science 2001, 294 (1907)Google Scholar
  16. 16.
    Goodson III, T.: Optical excitations in organic dendrimers investigated by time-resolved and nonlinear optical spectroscopy. Acc. Chem. Res. 38, 99 (2005)CrossRefGoogle Scholar
  17. 17.
    Ivanova, B., Spiteller, M.: Noncentrosymmetric crystals with marked nonlinear optical properties. J. Phys. Chem. A 114, 5099 (2010)CrossRefGoogle Scholar
  18. 18.
    Ivanova, B., Spiteller, M.: Possible application of the organic barbiturates as NLO materials. Cryst. Growth Des. 10, 2470 (2010)CrossRefGoogle Scholar
  19. 19.
    Inerbaev, T., Gu, F., Mizuseki, H., Kawasoe, Y.: Theoretical study of solvent effect on the structure, first electronic excited state, and nonlinear optical properties of substituted stilbazolium cations. Int. J. Quant. Chem. 111, 780 (2011)CrossRefGoogle Scholar
  20. 20.
    Jaquemin, D., Perpete, E., Cioini, I., Adamo, C.: Accurate simulation of optical properties in dyes. Acc. Chem. Res. 42, 326 (2009)CrossRefGoogle Scholar
  21. 21.
    Zhao, Y., Fu, F., Peng, H., Ma, Y., Liao, Q., Yao, J.: Construction and optoelectronic properties of organic one-dimensional nanostructures. Acc. Chem. Res. 43, 409 (2010)CrossRefGoogle Scholar
  22. 22.
    Kang, H., Facchetti, A., Zhu, P., Jiang, H., Yang, Y., Cariati, E., Righetto, S., Ugo, P., Zuccaccia, C., Macchioni, A., Stern, C., Liu, Z., Ho, S., Marks, J.: Exceptional molecular hyperpolarizabilities in twisted π-electron system chromophores. Angew. Chem. Int. Ed. 44, 7922 (2005)CrossRefGoogle Scholar
  23. 23.
    Hrobarik, P., Sigmundova, I., Zahradnık, P., Kasak, P., Arion, V., Franz, E., Clays, K.: Molecular engineering of benzothiazolium salts with large quadratic hyperpolarizabilities: Can auxiliary electron-withdrawing groups enhance nonlinear optical responses? J. Phys. Chem. C 114, 22289 (2010)CrossRefGoogle Scholar
  24. 24.
    Pan, F., Wong, M., Gramlich, V., Bosshard, Ch., Günter, P.: A novel and perfectly aligned highly electro-optic organic cocrystal of a merocyanine dye and 2,4-dihydroxybenzaldehyde. J. Am. Chem. Soc. 118, 6315 (1996)CrossRefGoogle Scholar
  25. 25.
    Yang, Z., Wörle, M., Mutter, L., Jazbinsek, M., Günter, P.: Synthesis, crystal structure, and second-order nonlinear optical properties of new stilbazolium salts. Cryst. Growth Des. 7, 83 (2006)CrossRefGoogle Scholar
  26. 26.
    Pan, F., Wong, M., Bosshard, Ch., Günter, P.: Crystal growth and characterization of the organic salt 4-N,N-dimethylamino-4′-N-methyl-stilbazolium tosylate (dast). Adv. Mater. 8, 592 (1996)CrossRefGoogle Scholar
  27. 27.
    Adachi, H., Takahashi, Y., Yabuzaki, J., Mori, Y., Sasaki, T.: J. Cryst. Growth 198(199), 568 (1999)CrossRefGoogle Scholar
  28. 28.
    Okada, S., Masaki, A., Matsuda, H., Nakanishi, H., Kato, M., Muramatsu, R., Otsuka, M.: Organic salts with large second-order optical nonlinearities. Jpn. J. Appl. Phys. 29, 1112 (1990)CrossRefGoogle Scholar
  29. 29.
    Coe, B., Harris, J., Asselberghs, I., Wostyn, K., Clays, K., Persoons, A., Brunschwig, B., Coles, S., Gelbrich, T., Light, M., Hursthouse, M., Nakatani, M.: Quadratic optical nonlinearities of N-methyl and N-aryl pyridinium salts. Adv. Funct. Mater. 13, 347 (2003)CrossRefGoogle Scholar
  30. 30.
    Soegiarto, A., Comotti, A., Ward, M.: Controlled orientation of polyconjugated guest molecules in tunable host cavities. J. Am. Chem. Soc. 132, 14603 (2010)CrossRefGoogle Scholar
  31. 31.
    Lamshoeft, M., Storp, J., Ivanova, B., Spiteller, M.: Structural and spectroscopic study of novel Ag(I) metal-organic complexes with dyes—experimental vs. theoretical methods. Inorg. Chim. Acta 382, 96 (2012)CrossRefGoogle Scholar
  32. 32.
    Frisch, M., Trucks G., Schlegel, H., Scuseria, G., Robb, M., Cheeseman, J., Zakrzewski, V., Montgomery, Jr. J., Stratmann, R., Burant, J., Dapprich, S., Millam, J., Daniels, A., Kudin, K., Strain, M., Farkas, O., Tomasi, J., Barone, V., Cossi, M., Cammi, R., Mennucci, B., Pomelli, C., Adamo, C., Clifford, S., Ochterski, J., Petersson, G., Ayala, P., Cui, Q., Morokuma, K., Malick, D., Rabuck, A.D., Raghavachari, K., Foresman, J., Cioslowski, J., Ortiz, J., Stefanov, B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Gomperts, R., Martin, R., Fox, D., Keith, T., Al-Laham, M., Peng, C., Nanayakkara, A., Gonzalez, C., Challacombe, M., Gill, P., Johnson, B., Chen, W., Wong, M., Andres, J., Gonzalez, C., Head-Gordon, M., Replogle, E., Pople, J.: Gaussian 09, Revision A.3, Gaussian Inc., Pittsburgh (2009)Google Scholar
  33. 33.
  34. 34.
  35. 35.
    Zhao, Y., Truhlar, D.: Density functionals with broad applicability in chemistry. Acc. Chem. Res. 41, 157 (2008)CrossRefGoogle Scholar
  36. 36.
    Zhao, Y., Truhlar, D.: The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 120, 215 (2008)CrossRefGoogle Scholar
  37. 37.
    Jensen, F.: Introduction to Computational Chemistry. Wiley, New York (1999)Google Scholar
  38. 38.
    Hehre, V., Radom, L., Schleyer, P., Pople, J.: Ab Initio Molecular Orbital Theory. Wiley, New York (1986)Google Scholar
  39. 39.
    Woon, D., Dunning, T.: Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J. Chem. Phys. 98, 1358 (1993)CrossRefGoogle Scholar
  40. 40.
    Foresman, J., Head-Gordon, M., Pople, J., Frisch, M.: Toward a systematic molecular orbital theory for excited states. J. Phys. Chem. 96, 135 (1992)CrossRefGoogle Scholar
  41. 41.
    Wiberg, K., Hadad, C., Foresman, J., Chupka, W.: Electronically excited states of ethylene. J. Phys. Chem. 96, 10756 (1992)CrossRefGoogle Scholar
  42. 42.
    Bauernschmitt, R., Ahlrichs, R.: Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem. Phys. Lett. 256, 454 (1996)CrossRefGoogle Scholar
  43. 43.
    Ivanova, B.: Solid-state Raman spectra of non-centrosymmetric crystals—theoretical vs. experimental study towards an application in THz-regime. J. Mol. Struct. 1016, 47 (2012)CrossRefGoogle Scholar
  44. 44.
    Ivanova, B., Spiteller, M.: On the chemical identification and determination of flavonoids in solid-state. Talanta 94, 9 (2012)CrossRefGoogle Scholar
  45. 45.
    Ivanova, B., Spiteller, M.: Physical optical properties and crystal structures of organic 5-sulfosalicylates: Theoretical and experimental study. J. Mol. Struct. 1003, 1 (2011)CrossRefGoogle Scholar
  46. 46.
    Oppenheim, K., Korter, T., Melinger, J., Grischkowsky, D.: Solid-state density functional theory investigation of the terahertz spectra of the structural isomers 1,2-dicyanobenzene and 1,3-dicyanobenzene. J. Phys. Chem. A 114, 12513 (2010)CrossRefGoogle Scholar
  47. 47.
    Harsha, S., Grischkowsky, D.: Terahertz (far-infrared) characterization of tris(hydroxymethyl)aminomethane using high-resolution waveguide THz-TDS. J. Phys. Chem. A 114, 3489 (2010)CrossRefGoogle Scholar
  48. 48.
  49. 49.
    Stephens, P., McCann, D., Cheeseman, J., Frisch, M.: Determination of absolute configurations of chiral molecules using ab initio time-dependent density functional theory calculations of optical rotation: How reliable are absolute configurations obtained for molecules with small rotations? Chirality 17, S52 (2005)CrossRefGoogle Scholar
  50. 50.
    Stephens, P., Devlin, F., Cheeseman, J., Frisch, M., Bortolini, O., Besse, P.: Determination of absolute configuration using ab initio calculation of optical rotation. Chirality 15, S57 (2003)CrossRefGoogle Scholar
  51. 51.
    Yildiz, A., Selvin, P.: Fluorescence imaging with one nanometer accuracy:  Application to molecular motors. Acc. Chem. Res. 38, 574 (2005)CrossRefGoogle Scholar
  52. 52.
    Koleva, B., Kolev, T., Lamshöft, M., Mayer-Figge, H., Sheldrick, W., Spiteller, M.: Synthesis, spectroscopic and structural elucidation of 1-butyl-4-[2-(3,5-dimethoxy-4-hydroxyphenyl)ethenyl)]pyridinium chloride tetrahydrate. Spectrochim. Acta 74A, 1120 (2009)Google Scholar
  53. 53.
    Dalton, G., Cifuentes, M., Petrie, S., Stranger, R., Humphrey, M., Samoc, M.: Highly Efficient Ru−Pseudohalide Catalysts for Olefin Metathesis. J. Am. Chem. Soc. 127, 11882 (2007)CrossRefGoogle Scholar
  54. 54.
    Kim, P., Jeong, J., Jazbinsek, M., Kwon, S., Yun, H., Kim, J., Lee, Z., Baek, I., Rotermund, F., Günter, P., Kwon, O.: Acentric nonlinear optical N-benzyl stilbazolium crystals with high environmental stability and enhanced molecular nonlinearity in solid state. Cryst. Eng. Comm. 13, 444 (2011)CrossRefGoogle Scholar
  55. 55.
    Würthner, F., Yao, S., Debaerdemaeker, T., Wortmann, R.: Dimerization of Merocyanine Dyes. Structural and Energetic Characterization of Dipolar Dye Aggregates and Implications for Nonlinear Optical Materials. J. Am. Chem. Soc. 124, 9431 (2002)CrossRefGoogle Scholar
  56. 56.
    Würthner, F., Wortmann, R., Meerholz, K.: Chromophore Design for Photorefractive Organic Materials. ChemPhysChem 3, 17 (2002)CrossRefGoogle Scholar
  57. 57.
    Würthner, F., Archetti, G., Schmidt, R., Kuball, H.: Solvent Effect on Color, Band Shape, and Charge-Density Distribution for Merocyanine Dyes Close to the Cyanine Limit. Angew. Chem. Int. Ed. 47, 4529 (2008)CrossRefGoogle Scholar
  58. 58.
    Kolev, T., Wortmann, R., Spiteller, M., Sheldrick, W., Heller, M.: 4-Hydroxy-3,5-dimethoxybenzaldehyde (syringaldehyde). Acta Cryst. E60, o1387 (2004)Google Scholar
  59. 59.
    Espinosa, E., Wyncke, B., Brahat, F., Gerbaux, X., Veintemillas, S., Molins, E.: Infrared vibrational spectra of l-histidinium dihydrogen orthophosphate orthophosphoric acid (LHP). Infrared Phys. Techn. 38, 449 (1997)CrossRefGoogle Scholar
  60. 60.
    Ohno, K., Nomura, S., Yoshida, H., Matsuura, H.: Conformational analysis of alkylamino chains using isolated C–D stretching vibrations. Spectrochim. Acta 55A, 2231 (1999)Google Scholar
  61. 61.
    Bugueno-Hoffmann, R., Romaint, F., Pasquier, B.: Raman and far-infrared study of the polar single crystals of 3-(4-chlorophenyl)-2-cyanopropenonitrile. J. Raman Spectrosc. 19, 101 (1988)CrossRefGoogle Scholar
  62. 62.
    Lefebvre, J., Fontaine, H., Fouret, R.: Raman scattering of lattice vibrations in H4-urea and D4-urea. J. Raman Spectrosc. 4, 173 (1975)CrossRefGoogle Scholar
  63. 63.
    H Schobert, D Strauch, Investigation of the LO-TO splitting in complex binary crystals. J. Phys.: Condens. Mater. 1993, 5, 6165Google Scholar
  64. 64.
    Lamshöft, M., Storp, J., Ivanova, B., Spiteller, M.: Gas-phase CT-stabilized Ag(I) and Zn(II) metal–organic complexes—Experimental versus theoretical study. Polyhedron 30, 2564 (2011)CrossRefGoogle Scholar
  65. 65.
    Ivanova, B., Spiteller, M.: AgI and ZnII complexes with possible application as NLO materials—Crystal structures and properties. Polyhedron 30, 241 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Cornelia Stolle
    • 1
  • Bojidarka Ivanova
    • 1
  • Michael Spiteller
    • 1
  1. 1.Institut für UmweltforschungUniversität DortmundDortmundGermany

Personalised recommendations