Adhesion of gold and silver nanoparticles onto urea–alkylamine inclusion compounds

  • Cristian Campos
  • Martín Muñoz
  • Lorena Barrientos
  • Erika Lang
  • Paul Jara
  • Isabel Sobrados
  • Nicolás Yutronic
Original Article


We report the synthesis and characterization of a new series of urea inclusion compounds containing primary alkylamine (octyl, decyl and dodecyl) as guests, as well as the deposition of gold and silver nanoparticles onto the crystalline surface of these complexes. X-ray diffraction confirms the inclusion process of the amine in the urea cavities. The structures determined for the three complexes correspond to a hexagonal channel structure with space group P6122. Alkylamine–urea stoichiometric ratios in all cases satisfy the relationship 1:3n (n = 2 for octylamine and 3 for decylamine and dodecylamine), determined by elemental analysis. The deposition of gold and silver nanoparticles by the magnetron sputtering technique onto microcrystals of the complexes was analyzed by Diffuse Reflectance Spectroscopy, showing characteristic surface plasmon resonance for metal nanoparticles. Transmission electron microscopy demonstrates the presence of metal nanoparticles (MNPs) in a size range between 5 and 60 nm for gold and between 5 and 20 nm for silver, and furthermore, in some cases it shows vestiges of a hexagonal arrangement of the MNPs. X-ray diffraction and IR measurements demonstrate that the basic structure of the matrix remains unchanged after the MNPs adhesion. IR also shows increased broadening and intensity of the characteristic NH2 bending frequencies (1,597 cm−1) when the MNPs interact with the inclusion compounds. We conclude that the interactions between the inclusion compounds and metal nanoparticles occurs mainly through the amino groups of the guest molecules that can emerge from the entrance of the inclusion compound cavities attracted by the metallic nanoparticles, in opposition to the restoring van der Waals interactions present inside channels, which increase with increasing chain length of the guest molecules.

Graphical abstract

Schematic representation of urea inclusion compounds containing primary alkylamine (octyl, decyl and dodecyl) as guests and the deposition of gold and silver nanoparticles onto the crystalline surface of these complexes


Urea inclusion compounds Amine guests Gold nanoparticles Silver nanoparticle 



This work has been supported by the FONDECYT Projects 1090029 and 1080505 and a Conicyt Scholarship of Martín Muñoz. L. B. P acknowledges the support of FONDECYT Project 11110138.


  1. 1.
    Takemoto, K., Sonoda, N.: In: Inclusion compounds. Atwood, J.L., Davies, J.E.D., MacNicol, D.D. (eds.) Inclusion Compounds of Urea, Thiourea and Selenourea, Inclusion Compounds, p. 47. Academic Press, New York (1984)Google Scholar
  2. 2.
    Lehn, J.M., Atwood, J.L., Davies, J.E.D., MacNicol, D.D., Vögte, F. (eds.): Comprehensive Supramolecular Chemistry. Pergamon, Oxford (1961)Google Scholar
  3. 3.
    Walba, D.M., Clark, N.A., Razavi, H.A.: Inclusion phenomena and molecular recognition. In: Atwood, J.L. (ed.) Inclusion Phenomena and Molecular Recognition, pp. 81–92. Plenum Press, New York and London (1990)CrossRefGoogle Scholar
  4. 4.
    Atwood, J.L., Steed, J.W. (eds.): Encyclopedia of Supramolecular Chemistry. Francis and Taylor, New York (2004)Google Scholar
  5. 5.
    Hollinsworth M.D., Harris K.D.M.: Comprehensive supramolecular chemistry. In: MacNicols, D.D., Toda, F., Bishop, R. (eds.) Pergamon, pp. 177–232. Pergamon Press, Oxford (1996)Google Scholar
  6. 6.
    Vögtle, F.: Supramolekulare chemie. In: Teubner, B., Stuttgart, G., pp. 13–156. Academic Press, New York (1989)Google Scholar
  7. 7.
    Pedersen, C.J.: The discovery of crown ethers. Science 241, 536 (1988)CrossRefGoogle Scholar
  8. 8.
    Smith, A.E.: The crystal structure of the urea–hydrocarbon complexes. Acta Crystallogr. 5, 224 (1952)CrossRefGoogle Scholar
  9. 9.
    Weber, T., Boysen, H., Frey, F.: Longitudinal positional ordering of n-alkane molecules in urea inclusion compounds. Acta Crystallogr. B 56, 132 (2000)CrossRefGoogle Scholar
  10. 10.
    Schlenk, W.: Die Harnstoff-Addition der aliphatischen Verbindungen. Liebigs. Annales 565, 204 (1949)Google Scholar
  11. 11.
    Harris, K.D.M., Thomas, J.M.: Structural aspects of urea inclusion compounds and their investigation by X-ray diffraction: a general discussion. J. Chem. Soc. 86, 2985 (1990)Google Scholar
  12. 12.
    Bishop, R., Dance, I.: New types of helical canal inclusion networks. Top. Curr. Chem. 149, 137 (1988)CrossRefGoogle Scholar
  13. 13.
    Harris, K.D.M., Gameson, I., Thomas, J.M.: Powder X-ray diffraction studies of a low-temperature phase transition in the n-hexadecane/urea inclusion compound. J. Chem. Soc. 86, 3135 (1990)Google Scholar
  14. 14.
    Harris, K.D.M., Smart, S.P., Hollinsworth, M.D.: Structural properties of α,ω-dibromoalkane/urea inclusion compounds: a new type of interchannel guest molecule ordering. J. Chem. Soc., Faraday Trans. 87, 3423 (1991)CrossRefGoogle Scholar
  15. 15.
    Hollinsworth, M.D., Santarsiero, B.D., Harris, K.D.M.: Zigzag channels in the structure of sebaconitrile/urea. Angew. Chem. Int. Ed. Engl. 33, 649 (1994)CrossRefGoogle Scholar
  16. 16.
    Jara, P., Yutronic, N., Nuñez, C., González, G.: Molecular reconigtion in urea clathrates. Inclusion of dipenthylamine. Bol. Soc. Chil. Quim. 39, 347 (1994)Google Scholar
  17. 17.
    Yutronic, N., Merchán, J., Garland, M.T., Jara, P.: Quinuclidine–thiourea inclusion compound. A perfect van der Waals cavity. J. Incl. Phenom. 45, 5 (2003)Google Scholar
  18. 18.
    Jara, P., Merchán, J., Yutronic, N., González, G.: Macroscopic evidence of inclusion phenomena in urea and thiourea matrices. J. Incl. Phenom. 36, 101 (2000)CrossRefGoogle Scholar
  19. 19.
    Jara, P., Yutronic, N., González, G.: Synthesis and structural aspects of dialkylamine inclusion compounds. J. Incl. Phenom. 22, 203 (1995)CrossRefGoogle Scholar
  20. 20.
    Yutronic, N., Merchán, J., Manríquez, V., González, G., Jara, P., Wittke, O., Garland, M.T.: Inclusion of a protonated amine in thiourea–chloride and –bromide matrix expected ionic conducting materials. Mol. Cryst. Liq. Cryst. 374, 223 (2002)CrossRefGoogle Scholar
  21. 21.
    Yutronic, N., González, G., Jara, P.: Compuestos de inclusión de tiourea con aminas. Bol. Soc. Chil. Quím. 37, 39 (1992)Google Scholar
  22. 22.
    Yutronic, N., Manríquez, V., Jara, P., Wittke, O., González, G.: Dicyclohexylamine-thiourea clathrate. Supramol. Chem. 12, 397 (2001)CrossRefGoogle Scholar
  23. 23.
    Yutronic, N., Manríquez, V., Jara, P., Wittke, O., González, G., Merchán, J.: Bis(thiourea) 1,2 diazabicycle[2.2.2] octane. A new layered thiourea inclusion compound. J. Chem. Soc. Perkin Trans. 2, 1757 (2000)Google Scholar
  24. 24.
    Li, Q., Yip, W.H., Mak, T.C.W.: Hydrogen-bonded urea-anion host lattices. Part 2. Crystal structures of inclusion compounds of urea with tetraalkylammonium bicarbonates. J. Incl. Phenom. 23, 3–233 (1978)Google Scholar
  25. 25.
    Mak, T.C.W., McMullan, R.K.: Urea–water-anion lattices. Part 1. Crystal structures of (C2H5)4N+X·(NH2)2CO·2H2O (X=Cl, Br, CN), an isomorphous series of layer-type inclusion complexes. J. Incl. Phenom. 6, 473 (1998)CrossRefGoogle Scholar
  26. 26.
    Xue, F., Mak, T.C.W.: Channel- and layer-type anionic host structures in inclusion compounds of urea, tetraalkylammonium terephthalate/trimesate and water. Acta Cryst. B 56, 142 (2000)CrossRefGoogle Scholar
  27. 27.
    Merchán, J., Yutronic, N., Jara, P., Garland, M.T., Baggio, R.: Protonated bis(quinuclidine) included in channel thiourea-bromide and ribbons thiourea-iodide lattice: new thiourea inclusion compounds. J. Incl. Phenom. 55, 367 (2006)CrossRefGoogle Scholar
  28. 28.
    Merchán, J., Lavayen, V., Jara, P., Sánchez, V., Yutronic, N.: Conductivity properties of thiourea- and urea-halogen inclusion compounds with diquinuclidinium cation as guest. J. Chil. Chem. Soc. 53(2), 1498 (2008)CrossRefGoogle Scholar
  29. 29.
    Thakral, S., Madan, A.K.: Urea inclusion compounds of enalapril maleate for the improvement of pharmaceutical characteristics. J. Pharm. Pharmacol. 59, 11–1501 (2007)CrossRefGoogle Scholar
  30. 30.
    Steed, J.W., Atwood, J. L. (eds.): Supramol. Chem., 2:387–405 (2009)Google Scholar
  31. 31.
    Kreibig, U., Vollmer, M.: Optical Properties of Metal Cluster. Springer, Berlin (1995)Google Scholar
  32. 32.
    Zhang, W., Qiao, X., Chen, J.: Synthesis of silver nanoparticles-Effects of concerned parameters in water/oil microemulsion. Mater. Sci. Eng. 142(1), 1 (2007)CrossRefGoogle Scholar
  33. 33.
    Cho, K.H., Park, J.E., Osaka, T., Park, S.G.: The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochim. Acta 51, 956 (2005)CrossRefGoogle Scholar
  34. 34.
    Sun, S.H., Murray, C.B., Weller, D., Folks, L., Moser, A.: Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattice. Science 287, 1989 (2000)CrossRefGoogle Scholar
  35. 35.
    Cao, Y.W.C., Jin, R.C., Mirkin, C.A.: Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297, 1536 (2002)CrossRefGoogle Scholar
  36. 36.
    Jiang, H.Q., Manolache, S., Wong, A.C.L., Denes, F.S.: Plasma-enhanced deposition of silver nanoparticles onto polymer and metal surfaces for the generation of antimicrobial characteristics. J. Appl. Polym. Sci. 93, 1411 (2004)CrossRefGoogle Scholar
  37. 37.
    Yeo, S.Y., Lee, H.J., Jeong, S.H.: Preparation of nanocomposite fibers for permanent antibacterial effect. J. Mater. Sci. 38, 2143 (2003)CrossRefGoogle Scholar
  38. 38.
    Hirano, Y., Wakasa, A., Saka, S., Yoshizawa, Y., Oya-Seimiya, Y., Hishinuma, Y., Nishimura, A., Matsumoto, A., Kumakura, H.: Preparation of Bi-2223 bulk composed with silver alloy wire. Phys. C 392, 458 (2003)CrossRefGoogle Scholar
  39. 39.
    Ren, X.L., Tang, F.Q.: Enhancement effect of Ag–Au nanoparticles on glucose biosensor sensitivity. Acta Chim. Sinica 60, 393 (2002)Google Scholar
  40. 40.
    Wang, H.S., Qiao, X.L., Chen, J.G., Wang, X.J., Ding, S.Y.: Mechanisms of PVP in the preparation of silver nanoparticles. Mater. Chem. Phys. 94, 449 (2005)CrossRefGoogle Scholar
  41. 41.
    Chimentao, R.J., Kirm, I., Medina, F., Rodriguez, X., Cesteros, Y., Salagre, P., Sueiras, J.E.: Sensitivity of styrene oxidation reaction to the catalyst structure of silver nanoparticles. Chem. Commun. 4, 846 (2004)CrossRefGoogle Scholar
  42. 42.
    He, B.L., Tan, J.J., Kong, Y.L., Liu, H.F.: Synthesis of size controlled Ag nanoparticles. J. Mol. Catal. A 221, 121 (2004)CrossRefGoogle Scholar
  43. 43.
    Wang, H.S., Qiao, X.L., Chen, J.G., Ding, S.Y.: Synthesis of nanosilver colloidal particles in water/oil microemulsion. Colloids Surf. A 256, 111 (2005)CrossRefGoogle Scholar
  44. 44.
    Leopold, N., Lendl, B.: A new method for fast preparation of highly SERS active silver colloids at room temperature by reduction of silver nitrate with hydroxylamine hydrochloride. J. Phys. Chem. B 107, 5723 (2003)CrossRefGoogle Scholar
  45. 45.
    Fujiki, Y., Tokunaga, N., Shinkai, S., Sada, K.: Anisotropic decoration of gold nanoparticles onto specific crystal faces of organic single crystals. Angew. Chem. Int. Ed. 45, 4764 (2006)CrossRefGoogle Scholar
  46. 46.
    Rodríguez-Llamazares, S., Yutronic, N., Jara, P., Noyong, M., Bretschneider, J., Simon, U.: Face preferred deposition of gold nanoparticles on α-cyclodextrin/octanethiol inclusion compound. J. Colloid Interface Sci. 316, 202 (2007)CrossRefGoogle Scholar
  47. 47.
    Barrientos, L., Yutronic, N., del Monte, F., Gutiérrez, M.C., Jará, P.: Ordered arrangement of gold nanoparticles on an α-cyclodextrin–dodecanethiol inclusion compound produced by magnetron sputtering. New J. Chem. 31, 1400 (2007)CrossRefGoogle Scholar
  48. 48.
    Barrientos, L., Yutronic, N., Muñoz, M., Silva, N., Jara, P.: Metallic nanoparticle tropism of alkylthiol guest molecules included into α-cyclodextrin host. Supramol. Chem. 21, 264 (2009)CrossRefGoogle Scholar
  49. 49.
    Silva, N., Moris, S., Herrera, B., Díaz, M., Kogan, M., Barrientos, L., Yutronic, N., Jara, P.: Formation of copper nanoparticles supported onto inclusion compounds of α-cyclodextrin: A new route to obtain copper nanoparticles. Mol. Cryst. Liq. Cryst. 521, 246 (2010)CrossRefGoogle Scholar
  50. 50.
    Tokarsky, J., Capkova, P., Klemm, V., Rafaja, D., Kukutshova, J.: Adhesion of silver nanoparticles on the montmorillonite surface. J. Phys. Chem. Solids 71(4), 634 (2010)CrossRefGoogle Scholar
  51. 51.
    Jara, P., Merchán, J., Yutronic, N., González, G.: Macroscopic evidence of inclusion phenomena in urea and thiourea matrices. J. Incl. Phenom. 36, 101 (2000)CrossRefGoogle Scholar
  52. 52.
    Yutronic, N., González, G., Jara, P.: Compuestos de inclusión de tiourea con aminas. Bol. Soc. Chil. Quim. 37, 39 (1992)Google Scholar
  53. 53.
    Bishop, R., Dance, I.: New types of helical canal inclusion networks. Topp. Curr. Chem. 149, 137 (1988)CrossRefGoogle Scholar
  54. 54.
    Gelerinter, E., Iuz, Z., Pouko, R., Zimmermann, H.: Structure and dynamics of the urea-trioxane inclusion compound phases, studied by deuteron NMR spectroscopy. J. Phys. Chem. 94, 5391 (1990)CrossRefGoogle Scholar
  55. 55.
    Muller, K.: Guest molecule dynamics in thiourea inclusion compounds as studied by carbon-13 magic angle spinning (MAS) NMR spectroscopy. J. Phys. Chem. 96, 5733 (1992)CrossRefGoogle Scholar
  56. 56.
    Clement, R., Gourji, M., Gribé, L.: Low temperature phase changes in the urea-trioxane inclusion compound. Molecules 21, 247 (1971)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Cristian Campos
    • 1
  • Martín Muñoz
    • 1
  • Lorena Barrientos
    • 2
  • Erika Lang
    • 1
  • Paul Jara
    • 1
  • Isabel Sobrados
    • 3
  • Nicolás Yutronic
    • 1
  1. 1.Departamento de QuímicaFacultad de Ciencias, Universidad de ChileÑuñoaChile
  2. 2.Departamento de QuímicaFacultad de Ciencias Básicas, Universidad Metropolitana de Ciencias de la EducaciónÑuñoaChile
  3. 3.Consejo Superior de Investigaciones Científicas, Department of EnergyInttituto de Ciencia de Materiales, Environment and Sustainable TechnologieMadridSpain

Personalised recommendations