Preparation of calix[4]arene-based sporopollenin and examination of its dichromate sorption ability

  • Serkan Sayin
  • Ilkay Hilal Gubbuk
  • Mustafa Yilmaz
Original Article


The present study describes the preparation of a new calix[4]arene-based sporopollenin material and its application for the removal of Na2Cr2O7 from aqueous solution. The novel calix[4]arene-based sporopollenin material was prepared via the immobilization of dihydrazine amide derivative of p-tert-butylcalix[4]arene (3) onto the modified sporopollenin. The newly prepared calix[4]arene-based sporopollenin is characterized by using different analytical techniques such as FT-IR spectroscopy, scanning electron microscope and Elemental analysis. The batch wise sorption study was carried out to optimize various experimental parameters such as the effect of sorbent dosage, pH, temperature and Cr(VI) anion concentration. It has been found that the sorption of Cr(VI) anion on calix[4]arene-based sporopollenin was highly pH dependent and maximum sorption was achieved at pH 1.5. The sorption behavior was also evaluated by Langmuir, Freundlich and Dubinin Radushkevich isotherms. The value of correlation coefficient (R 2) showed a good agreement with Freundlich isotherm model. Result of study demonstrated that calix[4]arene-based sporopollenin proved to be highly effective for the removal of Cr(VI).


Calix[4]arene Sporopollenin Sorption Dichromate Proton-switchable 



We would like to thank The Research Foundation of Selcuk University (BAP) for financial support of this work.


  1. 1.
    Shinkai, S.: Molecular recognition of calixarene-based host molecules. J. Incl. Phenom. 7, 193–201 (1989)CrossRefGoogle Scholar
  2. 2.
    Cuřínová, P., Pojarová, M., Budka, J., Lang, K., Stibor, I., Lhoták, P.: Binding of neutral molecules by p-nitrophenylureido substituted calix[4]arenes. Tetrahedron 66, 8047–8050 (2010)CrossRefGoogle Scholar
  3. 3.
    Akkuş, G.U., Memon, S., Sezgin, M., Yilmaz, M.: Synthesis of calix(aza)crown and its oligomeric analogue for the extraction of selected metal cations and dichromate anions. Clean Soil Air Water 37, 109–114 (2009)CrossRefGoogle Scholar
  4. 4.
    Sayin, S., Yilmaz, M.: Synthesis of a new calixarene derivative and its immobilization onto magnetic nanoparticle surfaces for excellent extractants toward Cr(VI), As(V), and U(VI). J. Chem. Eng. Data 56, 2020–2029 (2011)CrossRefGoogle Scholar
  5. 5.
    Stastny, V., Lhoták, P., Michlová, V., Stibor, I., Sykora, J.: Novel biscalix[4]arene-based anion receptors. Tetrahedron 58, 7207–7211 (2002)CrossRefGoogle Scholar
  6. 6.
    Deligöz, H., Erdem, E.: Comparative studies on the solvent extraction of transition metal cations by calixarene, phenol and ester derivatives. J. Hazard. Mater. 154, 29–32 (2008)CrossRefGoogle Scholar
  7. 7.
    Ghidini, E., Ugozzoli, F., Ungaro, R., Harkema, S., Abu El-Fadl, A., Reinhoudt, D.N.: Complexation of alkali metal cations by conformationally rigid, stereoisomeric calix[4]arene crown ethers: a quantitative evaluation of preorganization. J. Am. Chem. Soc. 112, 6979–6985 (1990)CrossRefGoogle Scholar
  8. 8.
    Sayin, S., Ozcan, F., Yilmaz, M.: Synthesis and evaluation of chromate and arsenate anions extraction ability of a N-methylglucamine derivative of calix[4]arene immobilized onto magnetic nanoparticles. J. Hazard. Mater. 178, 312–319 (2010)CrossRefGoogle Scholar
  9. 9.
    Tutar, H., Yilmaz, E., Pehlivan, E., Yilmaz, M.: Immobilization of Candida rugosa lipase on sporopollenin from Lycopodium clavatum. Int. J. Biol. Macromol. 45, 315–320 (2009)CrossRefGoogle Scholar
  10. 10.
    Brooks, J., Shaw, G.: Chemical structure of the exine of pollen walls and a new function for carotenoids in nature. Nat. Lond. 219, 532–533 (1968)CrossRefGoogle Scholar
  11. 11.
    Losi, M.E., Amrhein, C., Frankenberger, W.T.: Environmental biochemistry of chromium. Rev. Environ. Contam. Toxicol. 136, 91–121 (1994)CrossRefGoogle Scholar
  12. 12.
    Liu, T., Rao, P., Mak, M.S.H., Wang, P., Lo, I.M.C.: Removal of co-present chromate and arsenate by zero-valent iron in groundwater with humic acid and bicarbonate. Water Res. 43, 2540–2548 (2009)CrossRefGoogle Scholar
  13. 13.
    Ranjan, D., Talat, M., Hasan, S.H.: Biosorption of arsenic from aqueous solution using agricultural residue ‘rice polish’. J. Hazard. Mater. 166, 1050–1059 (2009)CrossRefGoogle Scholar
  14. 14.
    Gutsche, C.D., Nam, K.C.: Calixarenes. 22. Synthesis, properties, and metal complexation of aminocalixarenes. J. Am. Chem. Soc. 110, 6153–6162 (1988)CrossRefGoogle Scholar
  15. 15.
    Collins, E.M., McKervey, M.A., Madigan, E., Moran, M.B., Owens, M., Ferguson, G., Harris, S.J.: Chemically modified calix[4]arenes, regioselective synthesis of 1,3-(distal) derivatives and related compounds. X-ray crystal structure of a diphenol-dinitrile. J. Chem. Soc. Perkin Trans. 1(12), 3137–3142 (1991)CrossRefGoogle Scholar
  16. 16.
    Alekseeva, E.A., Bacherikov, V.A., Gren, A.I.: Synthesis of p-tert-butylcalix[4]arene derivatives containing amino acid residues. Russ. J. Gen. Chem. 70, 490–492 (2000)Google Scholar
  17. 17.
    Sayin, S., Ozcan, F., Memon, S., Yilmaz, M.: Synthesis and oxoanions (dichromate/arsenate) sorption study of N-methylglucamine derivative of calix[4]arene immobilized onto poly[(phenyl glycidyl ether)-co-formaldehyde]. J. Incl. Phenom. 67, 385–391 (2010)CrossRefGoogle Scholar
  18. 18.
    Gubbuk, I.H., Gup, R., Kara, H., Ersoz, M.: Adsorption of Cu(II) onto silica gel-immobilized Schiff base derivative. Desalination 249, 1243–1248 (2009)CrossRefGoogle Scholar
  19. 19.
    Jaime, C., de Mendoza, X., Prados, P., Nieto, P.M., Sanchez, C.: Carbon-13 NMR chemical shifts. A single rule to determine the conformation of calix[4]arenes. J. Org. Chem. 56, 3372–3376 (1991)CrossRefGoogle Scholar
  20. 20.
    Memon, S., Roundhill, D.M., Yilmaz, M.: Remediation and liquid–liquid phase transfer extraction of chromium(VI). A review. Collect. Czech. Chem. Commun. 69, 1231–1250 (2004)CrossRefGoogle Scholar
  21. 21.
    Zong, G., Chen, H., Qu, R., Wang, C., Ji, N.: Synthesis of polyacrylonitrile-grafted cross-linked N chlorosulfonamidated polystyrene via surface-initiated ARGET ATRP, and use of the resin in mercury removal after modification. J. Hazard. Mater. 186, 614–621 (2011)CrossRefGoogle Scholar
  22. 22.
    Ahmad, S., Khalid, N., Daud, M.: Adsorption studies of lead on lateritic minerals from aqueous media. Sep. Sci. Technol. 37, 343–362 (2002)CrossRefGoogle Scholar
  23. 23.
    Bhadoria, R., Singh, B.K., Tomar, R.: Sorption of toxic metals on sodium aluminosilicate (NAS). Desalination 254, 192–200 (2010)CrossRefGoogle Scholar
  24. 24.
    Cea, M., Seaman, J.C., Jara, A., Mora, M.L., Diez, M.C.: Kinetic and thermodynamic study of chlorophenol sorption in an allophanic soil. Chemosphere 78, 86–91 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Serkan Sayin
    • 1
    • 2
  • Ilkay Hilal Gubbuk
    • 1
  • Mustafa Yilmaz
    • 1
  1. 1.Department of ChemistrySelcuk UniversityKonyaTurkey
  2. 2.Department of ChemistryUniversity of MassachusettsAmherstUSA

Personalised recommendations