Preorganized, cone-conformational calix[4]arene possessing four propylenephosphonic acids with high extraction ability and separation efficiency for trivalent rare earth elements

  • Keisuke Ohto
  • Takashi Matsufuji
  • Tomoaki Yoneyama
  • Masahiro Tanaka
  • Hidetaka Kawakita
  • Tatsuya Oshima
Original Article


p-t-Octylcalix[4]arene with tetraphosphonic acid at lower rim in cone conformation has been designed and synthesized as a new extraction reagent to investigate the extraction behavior of the nine trivalent rare earth elements: La, Pr, Nd, Sm, Eu, Gd, Ho, Y, and Er. The extraction of rare earth metals with the present extractant occurs by a simple ion-exchange mechanism. The stoichiometry of the extractant to rare earth metal ion was determined to be 2:1 based on the extraction equation, half pH values, pH1/2, and the difference in the values of the extraction equilibrium constants of nine trivalent rare earth elements and separation factors between adjacent rare earth elements. This allowed for comparison of the estimated extraction efficiency and selectivity. The present extractant exhibited extremely high extractability and sufficiently high separation efficiency of rare earth metals, compared with calix[4]arene tetraphosphonic acid at upper rim, calix[4]arene tetraacetic acid at lower rim as previously reported and the commercial extraction reagent. This results was attributed to size and multidentate effects based on the preorganized cyclic structure of calix[4]arene and to the original selectivity of functional group for heavier rare earth elements.


Calix[4]arene tetraphosphonic acid Solvent extraction Rare earth metals Extraction ability Separation efficiency 


  1. 1.
    Rice, N.M.: Recent developments and potential uses for carboxylic acid extractants—a review. Hydrometallurgy 3, 111–133 (1978)CrossRefGoogle Scholar
  2. 2.
    Preston, J.S.: Solvent extraction of metals by carboxylic acids. Hydrometallurgy 14(2), 171–188 (1985)CrossRefGoogle Scholar
  3. 3.
    Freiser, H.: Solvent extraction of tervalent lanthanides as chelates—a systematic investigation of extraction equilibria. Solvent Extr. Ion Exch. 6(6), 1093–1108 (1988)CrossRefGoogle Scholar
  4. 4.
    Cox, M.: New reagents. In: Alegret, S. (ed.) Developments in Solvent Extraction, Chap. 8, pp. 151–158. Ellis Horwood Ltd, Chichester (1988)Google Scholar
  5. 5.
    Otu, E.O., Westland, A.D.: Solvent extraction with organophosphonic mono-acidic esters. Solv. Extr. Ion Exch. 8(6), 759–781 (1990)CrossRefGoogle Scholar
  6. 6.
    Yuan, C., Li, S., Feng, H.: In: Proceedings of ISEC’96, Value adding through Solvent Extraction, Melbourne, pp. 329–334 (1996)Google Scholar
  7. 7.
    Bogacki, M.B.: Physicochemical modification of copper extractants. A review. Solvent Extr Ion Exch 15(5), 731–755 (1997)CrossRefGoogle Scholar
  8. 8.
    Kolarik, Z.: Recent trends in the search for new extractants. Min. Proc. Extr. Met. Rev Int. J. 21(1–5), 89–141 (2000)CrossRefGoogle Scholar
  9. 9.
    Gloe, K., Stephan, H., Grotjahn, M.: Where is the Anion Extraction Going? Chem. Eng. Technol. 26(11), 1107–1117 (2003)CrossRefGoogle Scholar
  10. 10.
    Cox, M.: Solvent extraction in hydrometallurgy. In: Rydberg, J., Cox, M., Musikas, C., Choppin, G.R. (eds.) Solvent extraction principles and practice, Chap. 11, pp. 455–505. Marcel Dekker, New York (2004)Google Scholar
  11. 11.
    Ritcey, G.M.: Extractants. In: Ritcey, G.M. (ed.) Solvent Extraction—Principles and Applications to Process Metallurgy vol 1, revised 2nd ed., Chap. 3, pp. 69–184. G.M. Ritcey & Associates Incorporated, Ottawa (2006)Google Scholar
  12. 12.
    Inoue, K., Nakashio, F.: Industrial chelate extractants—Preparation and recent progress. Chem. Eng. Jpn. 46(3), 164–171 (1982)Google Scholar
  13. 13.
    Sudderth, R.B., Kordosky, G.A.: Chemical processing. In: Malhotra, D., Riggs, W.F. (eds.) Some Practical Considerations in the Evaluation and Selection of Solvent Extraction Reagents, Chap. 20, pp. 181–196. S.M.E Littleton, Colorado (1986)Google Scholar
  14. 14.
    Ritcey, G.M.: Extractants. In: Ritcey, G.M. (ed.) Solvent extraction—Principles and Applications to Process Metallurgy volume 1, revised 2nd ed., Chap. 3, p. 70. G.M. Ritcey & Associates Incorporated, Ottawa (2006)Google Scholar
  15. 15.
    Peppard, D.F., Mason, G.W., Maier, J.L., Driscoll, W.J.: Fractional extraction of the lanthanides as their di-alkyl orthophosphates. J. Inorg. Nucl. Chem. 4, 334–343 (1957)CrossRefGoogle Scholar
  16. 16.
    Peppard, D.F., Mason, G.W., Moline, S.W.: The use of dioctyl phosphoric acid extraction in the isolation of carrier-free 90Y, 140La, 144Ce, 143Pr, and 144Pr. J. Inorg. Nucl. Chem. 5, 141–146 (1957)CrossRefGoogle Scholar
  17. 17.
    Peppard, D.F., Driscoll, W.J., Sironen, R.J., McCarry, S.: Nonmonotonic ordering of lanthanides in tributyl phosphate-nitric acid extraction systems. J. Inorg. Nucl. Chem. 4, 326–333 (1957)CrossRefGoogle Scholar
  18. 18.
    Peppard, D.F., Mason, G.W., Hucher, I.: Stability constants of certain lanthanide(III) and actinide(III) chloride and nitrate complexes. J. Inorg. Nucl. Chem. 24, 881–888 (1962)CrossRefGoogle Scholar
  19. 19.
    Peppard, D.F., Mason, G.W., Giffin, G.: Extraction of selected trivalent lanthanide and actinide cations by bis (hexoxy-ethyl)phosphoric acid. J. Inorg. Nucl. Chem. 27, 1683–1691 (1965)CrossRefGoogle Scholar
  20. 20.
    Gutsche, C.D. (ed.): Calixarenes Revisited. Royal Society of Chemistry, Cambridge (1996)Google Scholar
  21. 21.
    Asfari, Z., Boehmer, V., Harrowfield, J.M., Vicens, J. (eds.): Calixarenes 2001. Kluwer, The Netherlands (2001)Google Scholar
  22. 22.
    Agrawal, Y.K., Kunji, S., Menon, S.K.: Analytical applications of calixarenes. Rev. Anal. Chem. 17(2), 69–139 (1998)CrossRefGoogle Scholar
  23. 23.
    Izatt, R.M., Pawlak, K., Bradshaw, J.M.: Thermodynamic and kinetic data for macrocycle interactions with cations and anions. Chem. Rev. 91(8), 1721–1785 (1991)CrossRefGoogle Scholar
  24. 24.
    Arnaud-Neu, F.: Solution chemistry of lanthanide macrocyclic complexes. Chem. Soc. Rev. 23(4), 235–241 (1994)CrossRefGoogle Scholar
  25. 25.
    Roundhill, D.M.: Metal complexes of calixarenes. Prog. Inorg. Chem. 43, 533–592 (1995)CrossRefGoogle Scholar
  26. 26.
    Ludwig, R.: Calixarenes in analytical and separation chemistry. Fresenius J. Anal. Chem. 367(2), 103–128 (2000)CrossRefGoogle Scholar
  27. 27.
    Menon, S.K., Sewani, M.: Chemical modifications of calixarenes and their analytical applications. Rev. Anal. Chem. 25(1), 49–82 (2006)CrossRefGoogle Scholar
  28. 28.
    Sliwa, W., Girek, T.: Calixarene complexes with metal ions. J. Incl. Phenom. Macrocycl. Chem. 66, 15–41 (2010)CrossRefGoogle Scholar
  29. 29.
    Malone, J.F., Marrs, D.J., McKervey, M.A., O’Hagen, P., Thompson, N., Walker, A., Arnaud-Neu, F., Mauprivez, O., Weill, M.-J.S.: Calix[n]arene phosphine oxides. A new series of cation receptors for extraction of europium, thorium, plutonium and americium in nuclear waste treatment. J. Chem. Soc. Chem. Commun., 2151-2153 (1995)Google Scholar
  30. 30.
    Arnaud-Neu, F., Boehmer, V., Dozol, J.-F., Gruetter, C., Jakobi, R.A., Kraft, D., Mauprivez, O., Rouquette, H., Weill, M.-J.S., Simon, N., Vogt, W.: Calixarenes with diphenylphosphoryl acetamide functions at the upper rim. A new class of highly efficient extractants for lanthanides and actinides. J. Chem. Soc. Perkin Trans 2(6), 1175–1182 (1996)Google Scholar
  31. 31.
    Delmau, L.H., Simon, N., Weill, M.-J.S., Arnaud-Neu, F., Dozol, J.-F., Eymard, S., Tournois, B., Boehmer, V.: CMPO-substituted calix[4]arenes, extractants with selectivity among trivalent lanthanides and between trivalent actinides and lanthanides. Chem. Commun. 16, 1627–1628 (1998)CrossRefGoogle Scholar
  32. 32.
    Delmau, L.H., Simon, N., Weill, M.-J.S., Arnaud-Neu, F., Dozol, J.-F., Eymard, S., Tuurnois, B., Gruetter, C., Musigmann, C., Tunayar, A., Boehmer, V.: Extraction of trivalent lanthanides and actinides by “CMPO-like” calixarenes. Sep. Sci. Technol. 34(6,7), 863–876 (1999)Google Scholar
  33. 33.
    Matthews, S.E., Saadioui, M., Boehmer, V., Barboso, S., Arnaud-Neu, F., Weill, M.-J.S., Jose, C.M., Alejandro, G., Dozol, J.-F.: Conformationally mobile wide rim carbamoylmethylphosphine oxide (CMPO)-calixarenes. J. Prakt. Chem. 341(3), 264–273 (1999)CrossRefGoogle Scholar
  34. 34.
    Arnaud-Neu, F., Browne, J.K., Byrne, D., Marrs, D.J., McKervey, M.A., O’Hagen, P., Weill, M.-J.S., Walker, A.: Extraction and complexation of alkali, alkaline earth, and F-element cations by calixaryl phosphine oxides. Chem. Eur. J. 5(1), 175–186 (1999)CrossRefGoogle Scholar
  35. 35.
    Barboso, S., Carrera, A.G., Matthews, S.E., Arnaud-Neu, F., Boehmer, V., Dozol, J.-F., Rouquette, H., Weill, M.J.-S.: Calix[4]arenes with CMPO functions at the narrow rim. Synthesis and extraction properties. J. Chem. Soc. Perkin Trans 2(4), 719–724 (1999)Google Scholar
  36. 36.
    Amatas, L., Klimchuk, O., Rudzevich, V., Pirozhenko, V., Kalchenko, V., Smirnov, I., Babain, V., Efremova, T., Varnek, A., Wipff, G., Arnaud-Neu, F., Roch, M., Saadioui, M., Boehmer, V.: New organophosphorus calix[4]arene ionophores for trivalent lanthanide and actinide cations. J. Supramol. Chem. 2(4–5), 421–427 (2003)Google Scholar
  37. 37.
    Schmidt, C., Saadioui, M., Boehmer, V., Host, V., Spirlet, M.-R., Desreux, J.F., Brisach, F., Arnaud-Neu, F., Dozol, J.-F.: Modification of calix[4]arenes with CMPO-functions at the wide rim. Synthesis, solution behavior, and separation of actinides from lanthanides. Org. Biomol. Chem. 1(22), 4089–4096 (2003)CrossRefGoogle Scholar
  38. 38.
    Karavan, M., Arnaud-Neu, F., Hubscher-Bruder, V., Smirnov, I., Kalchenko, V.: Novel phosphophorylated calixarenes for the recognition of f-elements. J. Incl. Phenom. Macrocycl. Chem. 66, 113–123 (2010)CrossRefGoogle Scholar
  39. 39.
    Harrowfield, J.M., Mocerino, M., Peachey, B.J., Skelton, B.W., White, A.H.: Rare-earth-metal solvent extraction with calixarene phosphates. J. Chem. Soc. Dalton Trans., 1687–1699 (1996)Google Scholar
  40. 40.
    Ludwig, R., Inoue, K., Yamato, T.: Solvent extraction behaviour of calixarene-type cyclophanes towards trivalent lanthanum, neodymium, europium, erbium, and ytterbium. Solvent Extr. Ion Exch. 11(2), 311–330 (1993)CrossRefGoogle Scholar
  41. 41.
    Ludwig, R.; Inoue, K.; Shinkai, S.; Gloe, K.; Solvent extraction behaviour of p-tert-butylcalix[n]arene carboxylic acid derivatives towards trivalent lanthanides and sodium. In: Proc.ISEC’93, Solvent Extraction in the Process Industries, vol. 1, pp. 273-278 (1993)Google Scholar
  42. 42.
    Ohto, K.; Yano, M.; Inoue, K.; Yamamoto, T.; Goto, M.; Nakashio, F.; Nagasaki, T.; Shinkai, S.: Extraction of Rare Earths with New Extractants of Calixarene Derivatives. In: Proc.ISEC’93, Solvent Extraction in the Process Industries, vol. 1, pp. 364–369 (1993)Google Scholar
  43. 43.
    Ohto, K., Yano, M., Inoue, K., Yamamoto, T., Goto, M., Nakashio, F., Shinkai, S., Nagasaki, T.: Solvent extraction of trivalent rare earth metal ions with carboxylate derivatives of calixarenes. Anal. Sci. 11(6), 893–902 (1995)CrossRefGoogle Scholar
  44. 44.
    Ludwig, R.; Gauglitz, R.: Calixarene type extractants for metal ions with improved properties. In: Proc.ISEC’96. Value Adding Through Solvent Extraction, vol.1, pp. 365–369 (1996)Google Scholar
  45. 45.
    Ludwig, R., Kunogi, K., Dung, N., Tachimori, S.: A calixarene-based extractant with selectivity for AmIII over LnIII. Chem.Commun. 20, 1985–1986 (1997)CrossRefGoogle Scholar
  46. 46.
    Ludwig, R., Lentz, D., Nguyen, T.K.D.: Trivalent lanthanide and actinide extraction by calixarenes with different ring sizes and different molecular flexibility. Radiochim. Acta 88(6), 335–343 (2000)CrossRefGoogle Scholar
  47. 47.
    Oshima, T., Yamamoto, T., Ohto, K., Goto, M., Nakashio, F., Furusaki, S.: A Calixarene-based Phosphoric Acid Extractant for Rare Earth Separation. Solvent Extr. Res. Dev., Jpn. 8, 194–204 (2001)Google Scholar
  48. 48.
    Jurecka, P., Vojtisek, P., Novotny, K., Rohovec, J., Lukes, I.: Synthesis, characterization and extraction behaviour of calix[4]arene-based phosphonic acids. J. Chem. Soc. Perkin Trans 2(7), 1370–1377 (2002)Google Scholar
  49. 49.
    Matulkova, I., Rohovec, J.: Synthesis, characterization and extraction behaviour of calix[4]arene with four propylene phosphonic acid groups on the lower rim. Polyhedron 24, 311–317 (2005)CrossRefGoogle Scholar
  50. 50.
    Ohto, K., Ota, H., Inoue, K.: Solvent extraction of rare earths with a calix[4]arene compound containing phosphonate groups introduced onto upper rim. Solvent Extr. Res. Dev. Jpn. 4, 167–182 (1997)Google Scholar
  51. 51.
    Ohto, K., Yamasaki, T., Inoue, K.: Extractive separation of rare earth ions by using calix[4]arene with isopropyl hydrogen phosphonate at upper rim. Ars Sep. Acta 4, 96–106 (2007)Google Scholar
  52. 52.
    Ford-Moore, A.H., Williams, J.H.: The reaction between trialkyl phosphites and alkyl halides. J. Chem. Soc. 69, 1465–1467 (1947)CrossRefGoogle Scholar
  53. 53.
    Harned, H.S., Owen, B.B. (eds.): The Physical Chemistry of Electrolytic, 3rd edn, p. 748. Reinhold Publishing Corporation, New York (1958)Google Scholar
  54. 54.
    Eigen, M.: Fast elementary steps in chemical reaction mechanisms. Pure Appl. Chem. 6(1), 97–115 (1963)CrossRefGoogle Scholar
  55. 55.
    Kolarik, Z., Pankova, H.: Acidic organophosphorus extractants—I Extraction of lanthanides by means of dialkyl phosphoric acids-effect of structure and size of alkyl group. J. Inorg. Nucl. Chem. 28, 2325–2333 (1966)CrossRefGoogle Scholar
  56. 56.
    Peppard, D.F., Mason, G.W., Lewey, S.: A tetrad effect in the liquid–liquid extraction ordering of lanthanides (III). J. Inorg. Nucl. Chem. 31, 2271–2272 (1960)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Keisuke Ohto
    • 1
  • Takashi Matsufuji
    • 1
  • Tomoaki Yoneyama
    • 1
  • Masahiro Tanaka
    • 1
  • Hidetaka Kawakita
    • 1
  • Tatsuya Oshima
    • 2
  1. 1.Department of Chemistry and Applied Chemistry, Faculty of Science and EngineeringSaga UniversitySagaJapan
  2. 2.Department of Applied Chemistry, Faculty of EngineeringUniversity of MiyazakiMiyazakiJapan

Personalised recommendations