Formation of copper(I)-templated [2]rotaxanes using “click” methodology: influence of the base, the thread and the catalyst

  • Fabien Durola
  • Stéphanie Durot
  • Valérie Heitz
  • Antoine Joosten
  • Jean-Pierre Sauvage
  • Yann Trolez
Original Article


Three new copper(I)-assembled [2]rotaxanes incorporating the same macrocycle and different axes containing a bipy, a phen or a terpy have been synthesized thanks to CuAAC reaction for attaching the stoppers. The influence of the nature of the base used for the stoppering reaction was investigated on the formation of the bipy-containing rotaxane. The yield of the [2]rotaxane synthesis was increased when using a phen as a coordinating unit in the thread with [Cu(CH3CN)4](PF6) as catalyst. The strong influence of the nature of the catalyst was clearly evidenced for the formation of the terpy rotaxane, increasing the yield of the stoppering reaction from 0 to 95% by just substituting the Cu(I) catalyst. Finally, the best conditions found for our systems are the use of Na2CO3 as a base and Cu(tren′)Br as a catalyst.


Rotaxane Copper(I) Click chemistry Phenanthroline Bipyridine Terpyridine 



We thank the Agence Nationale de la Recherche (ANR no. 07-Blan-0174, MOLPress) for its financial support as well as the French Ministry of Research for a fellowship to YT.

Supplementary material

10847_2011_9986_MOESM1_ESM.doc (174 kb)
Supplementary material 1 (DOC 174 kb)


  1. 1.
    Frisch, H.L., Wasserman, E.: Chemical topology. J. Am. Chem. Soc. 83, 3789–3795 (1961)CrossRefGoogle Scholar
  2. 2.
    Harrison, I.T., Harrison, S.: Synthesis of a stable complex of a macrocycle and a threaded chain. J. Am. Chem. Soc. 89, 5723–5724 (1967)CrossRefGoogle Scholar
  3. 3.
    Schill, G.: Catenanes, rotaxanes and knots. In: Organic Chemistry, p 22, Academic Press, New York (1971)Google Scholar
  4. 4.
    Agam, G., Graiver, D., Zilkha, A.: Synthesis of a catenane by a statistical double-stage method. J. Am. Chem. Soc. 98, 5214–5216 (1976)CrossRefGoogle Scholar
  5. 5.
    Amabilino, D.B., Stoddart, J.F.: Interlocked and intertwined structures and superstructures. Chem. Rev. 95, 2725 (1995)CrossRefGoogle Scholar
  6. 6.
    Armaroli, N., Diederich, F., Dietrich-Buchecker, C., Flamigni, O.L., Marconi, G., Nierengarten, J.-F., Sauvage, J.-P.: A copper(I)-complexed rotaxane with two fullerene stoppers: synthesis, electrochemistry, and photoinduced processes. Chem. Eur J 4, 406 (1998)CrossRefGoogle Scholar
  7. 7.
    Ashton, P.R., Johnston, M.R., Stoddart, J.F., Tolley, M.S., Wheeler, J.W.: A new design strategy for the self-assembly of molecular shuttles. J. Chem. Soc. Chem. Commun. 16, 1124–1128 (1992)CrossRefGoogle Scholar
  8. 8.
    Beer, P.D., Sambrook, M.R., Curiel, D.: Anion-templated assembly of interpenetrated and interlocked structures. Chem. Commun. 2105–2117 (2006)Google Scholar
  9. 9.
    Dietrich-Buchecker, C., Sauvage, J.-P.: Interlocking of molecular threads: from the statistical approach to the templated synthesis of catenands. Chem. Rev. 87, 795 (1987)CrossRefGoogle Scholar
  10. 10.
    Dietrich-Buchecker, C., Sauvage, J.-P.: Catenanes, Rotaxanes and Knots: A Journey Through the World of Molecular Topology. Wiley-VCH, Weinheim (1999)Google Scholar
  11. 11.
    Harada, A.: Cyclodextrin-based molecular machines. Acc. Chem. Res. 34, 456–464 (2001)CrossRefGoogle Scholar
  12. 12.
    Hoshino, T., Miyauchi, M., Kawaguchi, Y., Yamaguchi, H., Harada, A.: Daisy chain necklace: tri[2]rotaxane containing cyclodextrins. J. Am. Chem. Soc. 122, 9876–9877 (2000)CrossRefGoogle Scholar
  13. 13.
    Kay, E.R., Leigh, D.A., Zerbetto, F.: Synthetic molecular motors and mechanical machines. Angew. Chem. Int. Ed. 46, 72–191 (2007)CrossRefGoogle Scholar
  14. 14.
    Ogino, H.: Relatively high-yield synthese of rotaxanes. Syntheses and properties of compounds consisting of cyclodextrins threaded by α,ω-diaminoalkanes coordinated to cobalt(III) complexes. J. Am. Chem. Soc. 103, 1303–1304 (1981)CrossRefGoogle Scholar
  15. 15.
    Taylor, P.N., O′Connell, M.J., McNeill, L.A., Hall, M.J., Aplin, R.T., Anderson, H.L.: Insulated molecular wires: synthesis of conjugated polyrotaxanes by Suzuki coupling in water. Angew. Chem. Int. Ed. 39, 3456–3460 (2000)CrossRefGoogle Scholar
  16. 16.
    Vögtle, F., Dünnwald, T., Schmidt, T.: Catenanes and rotaxanes of the amide type. Acc. Chem. Res. 29, 451–460 (1996)CrossRefGoogle Scholar
  17. 17.
    Wenz, G., Steinbrunn, M.B., Landfester, K.: Solid state polycondensation within cyclodextrin channels leading to water soluble polyamide rotaxanes. Tetrahedron 53, 15575–15592 (1997)CrossRefGoogle Scholar
  18. 18.
    Wu, C., Lecavalier, P.R., Shen, Y.X., Gibson, H.W.: Synthesis of a rotaxane via the template method. Chem. Mater. 3, 569–572 (1991)CrossRefGoogle Scholar
  19. 19.
    Chambron, J.-C., Heitz, V., Sauvage, J.-P.: A rotaxane with two rigidly held porphyrins as stoppers. J. Chem. Soc. Chem. Commun. 1131–1133 (1992)Google Scholar
  20. 20.
    Aston, P.R., Glink, P.T., Stoddart, J.F., Tasker, P.A., White, A.J.P., Williams, D.J.: Self-assembling [2]- and [3]rotaxanes from secondary dialkylammonium salts and crown ethers. Chem. Eur. J. 2, 729–736 (1996)CrossRefGoogle Scholar
  21. 21.
    Blanco, M.-J., Chambron, J.-C., Heitz, V., Sauvage, J.-P.: A linear multiporphyrinic [2]-rotaxane via amide bond formation. Org. Lett. 2, 3051–3054 (2000)CrossRefGoogle Scholar
  22. 22.
    Furusho, Y., Sasabe, H., Natsui, D., Murakawa, K.-I., Takata, T., Harada, T.: Synthesis of [2]- and [3]rotaxanes by an end-capping approach utilizing urethane formation. Bull. Chem. Soc. Jpn. 77, 179–185 (2004)CrossRefGoogle Scholar
  23. 23.
    Matsumura, T., Ishiwari, F., Koyama, Y., Takata, T.: C-C bond-forming click synthesis of rotaxanes exploiting nitrile N-oxide. Org. Lett. 12, 3828–3831 (2010)CrossRefGoogle Scholar
  24. 24.
    Rostovtsev, V.V., Green, L.G., Fokin, V.V., Sharpless, K.B.: A stepwise Huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed. 41, 2596 (2002)CrossRefGoogle Scholar
  25. 25.
    TornØe, C.W., Christensen, C., Meldal, M.: Peptidotriazoles on solid pahse: [1,2,3]-triazoles by regiospecific copper(I)-catalzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem. 67, 3057–3064 (2002)CrossRefGoogle Scholar
  26. 26.
    Durot, S., Frey, J., Sauvage, J.-P., Tock C.: Organic azides: syntheses and applications. In: Bräse, S., Banert, K. (eds.), pp 413. Wiley, Chichester (2010)Google Scholar
  27. 27.
    Aprahamian, I., Miljanic, O.S., Dichtel, W.R., Isoda, K., Yasuda, T., Kato, T., Stoddart, J.F.: Clicked interlocked molecules. Bull. Chem. Soc. Jpn. 80, 1856–1869 (2007)CrossRefGoogle Scholar
  28. 28.
    Hänni, K.D., Leigh, D.A.: The application of CuAAC “click” chemistry to catenane and rotaxane synthesis. Chem. Soc. Rev. 39, 1240–1251 (2010)CrossRefGoogle Scholar
  29. 29.
    Dichtel, W.R., Miljanic, O.S., Spruell, J.M., Heath, J.R., Stoddart, J.F.: Efficient templated synthesis of donor-acceptor rotaxanes using click chemistry. J. Am. Chem. Soc. 128, 10388–10390 (2006)CrossRefGoogle Scholar
  30. 30.
    Aucagne, V., Hänni, K.D., Leigh, D.A., Lusby, P.J., Walker, D.B.: Catalytic “click” rotaxanes: a substoichiometric metal-template pathway to mechanically interlocked architectures. J. Am. Chem. Soc. 128, 2186–2187 (2006)CrossRefGoogle Scholar
  31. 31.
    Mobian, P., Collin, J.-P., Sauvage, J.-P.: Efficient synthesis of a labile copper(I)-rotaxane complex using click chemistry. Tetrahedron Lett. 47, 4907–4909 (2006)CrossRefGoogle Scholar
  32. 32.
    Coutrot, F., Busseron, E.: A new glycorotaxane molecular machine based on an anillinium and a triazolium station. Chem. Eur. J. 14, 4784 (2008)CrossRefGoogle Scholar
  33. 33.
    Balzani, V., Credi, A., Raymo, F., Stoddart, J.F.: Artificial molecular machines. Angew. Chem. Int. Ed. 39, 3348–3391 (2000)CrossRefGoogle Scholar
  34. 34.
    Durot, S., Reviriego, F., Sauvage, J.-P.: Copper-complexed catenanes and rotaxanes in motion: 15 years of molecular machines. Dalton Trans. 39, 10557–10570 (2010)CrossRefGoogle Scholar
  35. 35.
    Grosshenny, V., Romero, F.M., Ziessel, R.: Construction of preorganized polytopic ligands via palladium-promoted cross-coupling reactions. J. Org. Chem. 62, 1491–1500 (1997)CrossRefGoogle Scholar
  36. 36.
    Dietrich-Buchecker, C.O., Sauvage, J.-P., Kern, J.-M.: Une nouvelle famille de molécules: les métallo-caténanes. Tetrahedron Lett. 24, 5095–5098 (1983)CrossRefGoogle Scholar
  37. 37.
    Collin, J.-P., Sauvage, J.-P., Trolez, Y., Rissanen, K.: [3]Rotaxanes and [3]pseudorotaxanes with a rigid two-bidentate chelate axle threaded through two coordinating rings. New J. Chem. 33, 2148–2154 (2009)CrossRefGoogle Scholar
  38. 38.
    Ashton, P.R., Glink, P.T., Stoddart, J.F., Tasker, P.A., White, A.J.P., Williams, D.J.: Self-assembling [2]- and [3]rotaxanes from secondary dialkylammonium salts and crown ethers. Chem. Eur. J. 2, 729 (1996)CrossRefGoogle Scholar
  39. 39.
    Durot, S., Mobian, P., Collin, J.-P., Sauvage, J.-P.: Synthesis of new copper(I)-complexed rotaxanes via click chemistry. Tetrahedron 64, 8496–8503 (2008)CrossRefGoogle Scholar
  40. 40.
    Haensch, C., Chiper, M., Ulbricht, C., Winter, A., Hoeppener, S., Schubert, U.S.: Reversible supramolecular functionalization of surfaces: terpyridine ligands as versatile building blocks for moncovalent architectures. Langmuir 24, 12981–12985 (2008)CrossRefGoogle Scholar
  41. 41.
    Winter, A., Wild, A., Hoogenboom, R., Fijten, M.W.M., Hager, M.D., Fallahpour, R.-A., Schubert, U.S.: Azido- and Ethynyl-substituted 2,2′:6′,2′′-terpyridines as suitable substrates for click reactions. Synthesis 9, 1506–1512 (2009)Google Scholar
  42. 42.
    Constable, E.C., Housecroft, C.E., Price, J.R., Schweighauser, L., Zampese, J.A.: First example of a click reaction of a coordinated 4′-azido-2,2′:6′,2′′-terpyridine ligand. Inorg. Chem. Commun. 13, 495–497 (2010)CrossRefGoogle Scholar
  43. 43.
    Bogdan, N.D., Matache, M., Meier, V.M., Dobrota, C., Dumitru, I., Roiban, G.D., Funeriu, D.P.: Protein-inorganic array construction: design and synthesis of the building blocks. Chem. Eur. J. 16, 2170–2180 (2010)CrossRefGoogle Scholar
  44. 44.
    Collin, J.-P., Durot, S., Keller, M., Sauvage, J.-P., Trolez, Y., Cetina, M., Rissanen, K.: Synthesis of [5]rotaxanes containing bi- and tridentate coordination sites in the axis. Chem. Eur. J. 17, 947 (2011)CrossRefGoogle Scholar
  45. 45.
    Collin, J.-P., Durot, S., Sauvage, J.-P., Trolez, Y.: Synthesis of [2]-, [3]-, and [4]rotaxanes whose axis contains two bidentate and two tridentate chelates. New. J. Chem. doi: 10.1039/C1NJ20213H
  46. 46.
    Barré, G., Taton, D., Lastécouères, D., Vincent, J.-M.: Closer to the “ideal recoverable catalyst” for atom transfer radical polymerization using a molecular non-fluorous thermomorphic system. J. Am. Chem. Soc. 126, 7764–7765 (2004)CrossRefGoogle Scholar
  47. 47.
    Candelon, N., Lastécouères, D., Diallo, A. K., Aranzaes, J. R., Astruc, D., Vincent, J.-M.: A highly active and reusable copper(I)-tren catalyst for the “click” 1,3-dipolar cycloaddition of azide and alkynes. Chem. Commun. 741 (2008)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Fabien Durola
    • 1
  • Stéphanie Durot
    • 1
  • Valérie Heitz
    • 1
  • Antoine Joosten
    • 1
  • Jean-Pierre Sauvage
    • 1
  • Yann Trolez
    • 1
  1. 1.Laboratoire de Chimie Organo-MinéraleInstitut de Chimie de Strasbourg, UMR 7177 CNRS, Université de StrasbourgStrasbourg CedexFrance

Personalised recommendations