Advertisement

Naphthyridine amide–urea conjugate: a case toward selective fluorometric sensing of N-acetyl proline carboxylate

  • Kumaresh Ghosh
  • Tanmay Sarkar
Short Communication

Abstract

A simple neutral naphthyridine-based chemosensor 1, which selectively recognizes the tetrabutylammonium salt of N-acetyl-l-proline over the other N-acetyl-l-amino acid salts studied in CHCl3 containing 0.1% DMSO, has been designed and synthesized. Moreover, the complexation-induced change in emission characteristics of 1 distinguishes the amino acid salts examined from their conjugate acids. Interaction studies were performed by UV–vis, fluorescence and NMR spectroscopic methods.

Graphical Abstract

A simple neutral naphthyridine –based chemosensor 1, which selectively recognizes the tetrabutylammonium salt of N-acetyl-l-proline in CHCl3 containing 0.1% DMSO, has been designed and synthesized. The complexation-induced change in emission characteristics of 1 distinguishes the amino acid salts from their conjugate acids.

Keywords

Naphthyridine Urea binding site Proline salt recognition Fluorometric distinction DFT calculation 

Notes

Acknowledgments

We thank CSIR, New Delhi, India for financial support. T.S thanks CSIR, New Delhi, India for providing fellowship. We also thank the reviewer for constructive criticism.

Supplementary material

10847_2011_9929_MOESM1_ESM.docx (5.5 mb)
Supplementary material 1 (DOCX 5660 kb)

References

  1. 1.
    Schmidtchen, F.P., Berger, M.: Artificial organic host molecules for anions. Chem. Rev. 97, 1609–1646 (1997)CrossRefGoogle Scholar
  2. 2.
    Martinez-Manez, R., Sancenon, F.: Fluorogenic and chromogenic chemosensors and reagents for anions. Chem. Rev. 103, 4419–4476 (2003)CrossRefGoogle Scholar
  3. 3.
    Kondo, I.S., Hiroka, Y., Kurmatani, N., Yano Y.: Selective recognition of dihydrogen phosphate by receptors bearing pyridyl moieties as hydrogen bond acceptors. Chem. Commun. 1720–1722 (2005)Google Scholar
  4. 4.
    Bell, T.W., Hext, N.M.: Supramolecular optical chemosensors for organic analytes. Chem. Soc. Rev. 33, 589–598 (2004)Google Scholar
  5. 5.
    Yuasa, H., Miyagawa, N., Izumi, T., Nakatani, M., Izumi, M., Hashimoto, H.: Hinge sugar as a movable component of an excimer fluorescence sensor. Org. Lett. 6, 1489–1492 (2004)CrossRefGoogle Scholar
  6. 6.
    Xue, L., Liu, Q., Jiang, H.: Ratiometric Zn2+ fluorescent sensor and new approach for sensing Cd2+ by ratiometric displacement. Org. Lett. 11, 3454–3457 (2009)CrossRefGoogle Scholar
  7. 7.
    Gale, P.A.: Anion and ion pair chemistry: highlights from 2000 and 2001. Coord. Chem. Rev. 240, 191–221 (2003)CrossRefGoogle Scholar
  8. 8.
    Spichiger-Keller, U.S.: Chemical Sensors and Biosensors for Medical and Biological Applications. Wiley-VCH, Weinheim (1998)CrossRefGoogle Scholar
  9. 9.
    Gale, P.A., García-Garrido, S.E., Garric, J.: Anion receptors based on organic frameworks: highlights from 2005 and 2006. Chem. Soc. Rev. 37, 151–190 (2008)CrossRefGoogle Scholar
  10. 10.
    Gale, P.A.: Anion receptor chemistry: highlights from 1999. Coord. Chem. Rev. 213, 79–128 (2001)CrossRefGoogle Scholar
  11. 11.
    Gunnlaugsson, T., Glynn, M., Tocci, G.M., Kruger, P.E., Pfeffer, F.M.: Anion recognition and sensing in organic and aqueous media using luminescent and colorimetric sensors. Coord. Chem. Rev. 250, 3094–3117 (2006) and references cited thereinGoogle Scholar
  12. 12.
    Voet, D., Voet, J.G.: Biochemistry, 2nd edn. Wiley, New York (1995)Google Scholar
  13. 13.
    Bush, M.E., Bouley, N.D., Urbach, A.R.: Charge-mediated recognition of N-terminal tryptophan in aqueous solution by a synthetic host. J. Am. Chem. Soc. 127, 14511–14517 (2005)CrossRefGoogle Scholar
  14. 14.
    Schmuck, C., Geiger, L.: Efficient complexation of N-acetyl amino acid carboxylates in water by an artificial receptor: unexpected cooperativity in the binding of glutamate but not aspartate. J. Am. Chem. Soc. 127, 10486–10487 (2005) and references cited thereinGoogle Scholar
  15. 15.
    Fitzmaurice, J., Gaggini, F., Srinivasan, N., Kilburn, J.D.: Carboxylate binding in polar solvents using pyridylguanidinium salts. Org. Biomol. Chem. 5, 1706–1714 (2007)CrossRefGoogle Scholar
  16. 16.
    Vicent, C., Fan, E., Hamilton, A.D.: Molecular recognition: directed hydrogen bonding receptors for acylamino acids and carboxylates. Tetrahedron Lett. 33, 4269–4272 (1992) and references cited thereinGoogle Scholar
  17. 17.
    Kim, Y.K., Lee, H.N., Singh, N.J., Choi, H.J., Xue, J.Y., Kim, K.S., Yoon, J., hyun, M.H.: Anthracene derivatives bearing thiourea and glucopyranosyl groups for the highly selective chiral recognition of amino acids: opposite chiral selectivities from similar binding units. J. Org. Chem. 73, 301–304 (2008)CrossRefGoogle Scholar
  18. 18.
    Ghosh, K., Masanta, G., Chattopadhyay, A.P.: Anthracene-based ureidopyridyl fluororeceptor for dicarboxylates. Tetrahedron Lett. 48, 6129–6132 (2007)CrossRefGoogle Scholar
  19. 19.
    Ghosh, K., Sarkar, A.R.: Anthracene-based macrocyclic fluorescent chemosensor for selective sensing of dicarboxylate. Tetrahedron Lett. 50, 85–88 (2009)CrossRefGoogle Scholar
  20. 20.
    Ghosh, K., Sarkar, A.R., Masanta, G.: An anthracene based bispyridinium amide receptor for selective sensing of anions. Tetrahedron Lett. 48, 8725–8729 (2007)CrossRefGoogle Scholar
  21. 21.
    Ghosh, K., Masanta, G., Chattopadhyay, A.P.: Triphenylamine-based pyridine N-oxide and pyridinium salts for size-selective recognition of dicarboxylates. Eur. J. Org. Chem. 26, 4515–4524 (2009) and references cited thereinGoogle Scholar
  22. 22.
    Ma, Y., Kolotuchin, S.V., Zimmerman, S.C.: Supramolecular polymer chemistry: Self-assembling dendrimers using the DDA.AAD (GC-like) hydrogen bonding motif. J. Am. Chem. Soc. 124, 13757–13769 (2002)CrossRefGoogle Scholar
  23. 23.
    Goswami, S., Mukherjee, R.: Molecular recognition: a simple dinaphthyridine receptor for urea. Tetrahedron Lett. 38, 1619–1622 (1997)CrossRefGoogle Scholar
  24. 24.
    Herranz, F., Santa Maria, M.D., Claramunt, R.M.: Molecular recognition: Improved binding of biotin derivatives with synthetic receptors. J. Org. Chem. 71, 2944–2951 (2006)CrossRefGoogle Scholar
  25. 25.
    Ghosh, K., Sen, T., Frohlich, R.: A naphthyridine-based receptor for sensing citric acid. Tetrahedron Lett. 48, 2935–2938 (2007)CrossRefGoogle Scholar
  26. 26.
    Job, P.: Formation and stability of inorganic complexes in solution. Ann. Chim. 9, 113 (1928)Google Scholar
  27. 27.
    Valeur, B., Pouget, J., Bourson, J., Kaschke, M., Eensting, N.P.: Tuning of photoinduced energy transfer in a bichromophoric coumarin supermolecule by cation binding. J. Phys. Chem. 96, 6545–6549 (1992)CrossRefGoogle Scholar
  28. 28.
    Frisch, M.J., et al.: Gaussian 03, Revision C.01. Gaussian, Inc., Wallingford (2004)Google Scholar
  29. 29.
    Becke, D.: Density-functional thermochemistry.3. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993)CrossRefGoogle Scholar
  30. 30.
    Stephens, P.J., Devlin, F.J., Chabalowski, C.F., Frisch, M.J.: Ab Initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 98, 11623–11627 (1994)CrossRefGoogle Scholar
  31. 31.
    MM2 calculation was done using CS Chem 3D version 7.0Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of KalyaniKalyani, NadiaIndia

Personalised recommendations