Advertisement

Extraction of vanadyl porphyrins in crude oil by inclusion dispersive liquid–liquid microextraction and nano-baskets of calixarene

  • Bahram Mokhtari
  • Kobra Pourabdollah
Original Article

Abstract

The novelties of this approach are introducing the self-settled dispersive liquid–liquid microextraction technique to remove the centrifuging step, conducting the dispersive liquid–liquid microextraction in complex organic systems, applicability of water as disperser phase, and inclusion microextraction of charged porphyrins by nano-baskets of calix[4]arenes, which act as the settling agents as well as the inclusion ligands. Diacid p-tert-butylcalix[4]arene in the cone conformation was synthesized and used. The related parameters including ligand concentration, volume of water disperser, salt effect, and extraction time were optimized. The linear range, detection limit (S/N = 3) and precision (RSD, n = 6) were determined to be 0.2–50, 0.07 μg L−1 and 5.3%, respectively. The established method was applied to determine the target compound in five samples of live crude oil, were sampled from an Iranian offshore field. Owing to the overall differences (such as organic media, inclusion extraction, water-soluble ligands, etc.), the comparison of the proposed method with the traditional liquid–liquid microextraction was inapplicable. These results revealed that the new approach is competitive analytical tool and an alternative of the traditional methods in the crude oil and related systems. Moreover, in those systems that the inclusion separation is not requested, it is possible to use a tertiary system including a proper extraction agent/solvent and calixarene phase, as settling agent, along with the aqueous disperser in the organic systems.

Keywords

Nano-basket Dispersive liquid–liquid microextraction Vanadyl porphyrins Calix[4]arene 

Notes

Acknowledgment

This work was supported by Islamic Azad University (Shahreza branch) and Iran Nanotechnology Initiative Council.

References

  1. 1.
    Pourabdollah, K., Zarringhalam Moghaddam, A., Kharrat, R., Mokhtari, B.: Study of asphaltene and metal upgrading in VAPEX process. Energy Fuels 24, 4396–4401 (2010)CrossRefGoogle Scholar
  2. 2.
    Pourabdollah, K., Zarringhalam Moghaddam, A., Kharrat, R., Mokhtari, B.: Experimental feasibility study of in situ nano-particles in enhanced oil recovery and heavy oil production. Energy Sources A (2012). doi: 10.1080/16567030903441417
  3. 3.
    Pourabdollah, K., Zarringhalam Moghaddam, A., Kharrat, R., Mokhtari, B.: Improvement of Heavy Oil Recovery in VAPEX process using montmorillonite nanoclays. Oil Gas Sci. Technol. (2012). doi: 20.2516/ogst/2011109
  4. 4.
    Ali, M.F., Perzanowski, H., Bukhari, A., Al-Haji, A.A.: Nickel and vanadyl porphyrins in Saudi Arabian crude oils. Energy Fuels 7, 179–184 (1993)CrossRefGoogle Scholar
  5. 5.
    Treibs, A.porphyrins.: Annales des Chemie 509, 103 (1934)CrossRefGoogle Scholar
  6. 6.
    Premovic, P.I., Jovanovic, L.S.: Are vanadyl porphyrins products of asphaltene/kerogen thermal breakdown? Fuel 76, 267–272 (1997)CrossRefGoogle Scholar
  7. 7.
    Premovic, P.I., Allard, T., Nikolic, N.D., Tonsa, I.R., Pavlovic, M.S.: Estimation of vanadyl porphyrin concentration in sedimentary kerogens and asphaltenes. Fuel 79, 813–819 (2000)CrossRefGoogle Scholar
  8. 8.
    Lepri, F.G., Welz, B., Borges, D.L.G., Silva, A.F., Vale, M.G.R., Heitmann, U.: Speciation analysis of volatile and non-volatile vanadium compounds in Brazilian crude oils using high-resolution continuum source graphite furnace atomic absorption spectrometry. Anal. Chim. Acta 558, 195–200 (2006)CrossRefGoogle Scholar
  9. 9.
    El-Sabagh, S.M.: Occurrence and distribution of vanadyl porphyrins in Saudi Arabian crude oils. Fuel Process. Technol. 57, 65–78 (1998)CrossRefGoogle Scholar
  10. 10.
    Salehizadeh, H., Mousavi, M., Hatamipour, S., Kermanshahi, K.: Microbial demetallization of crude oil using Aspergillus sp.: vanadium oxide octaethyl porphyrin (VOOEP) as a model of metallic petroporphyrins. Iranian J. Biotechnol. 5, 226–231 (2007)Google Scholar
  11. 11.
    Ion, R.M., Dumitriu, I., Fierascu, R.C.: Analytical investigations of vanadyl porphyrin from Carpathian rocks. Environ. Eng. Manage. J. 9, 827–831 (2010)Google Scholar
  12. 12.
    Holden, P.N., Sundararaman, P., Gaffey, M.J.: Estimation of porphyrin concentration in the kerogen fraction of shales using high-resolution reflectance spectroscopy. Geochim. Cosmochim. Acta 55, 3893–3899 (1991)CrossRefGoogle Scholar
  13. 13.
    Premovic, P.I., Tonsa, I.R., Dordevic, D.M., Pavlovic, M.S.: Air oxidation of the kerogen/asphaltene vanadyl porphyrins: an electron spin resonance study. J. Serb. Chem. Soc. 65, 113–121 (2000)Google Scholar
  14. 14.
    Saitoh, K., Tanji, H., Zheng, Y.: Practical approach to chemical speciation of petroporphyrins. Anal. Sci. Suppl. 17, 1511–1513 (2001)Google Scholar
  15. 15.
    Pourabdollah, K., Mokhtari, B.: Determination of oil wells productivity using multivariate FTIR data. Spectrochim. Acta A 84, 22–24 (2011)CrossRefGoogle Scholar
  16. 16.
    Pourabdollah, K., Mokhtari, B.: Flow rate measurement of individual oil well using multivariate thermal analysis. Measurement 44, 2028–2034 (2011)CrossRefGoogle Scholar
  17. 17.
    Pourabdollah, K., Mokhtari, B.: Well surveillance using multivariate thermal measurements. J. Therm. Anal. Calorim. (2012). doi: 10.1007/s10973-011-1668-5
  18. 18.
    Pourabdollah, K., Mokhtari, B.: Application of FTIR in flow surveillance of oil wells. Spectrosc. Lett. (2012). doi: 10.1080/00387010.2011.597481
  19. 19.
    Mokhtari, B., Pourabdollah, K.: SPME-GC determination of methanol as a hydrate inhibitor in crude oil. Talanta 87, 118–125 (2011)CrossRefGoogle Scholar
  20. 20.
    Mokhtari, B., Pourabdollah, K.: Determination of hydrate inhibitor in crude oil by nanoextraction–gas chromatography. J. Sep. Sci. (2012). doi: 10.1002/jssc.201100673
  21. 21.
    Rezaee, M., Assadi, Y., Millani, M.R., Aghaee, E., Ahmadi, F., Berijani, S.: Determination of organic compounds in water using dispersive liquid–liquid microextraction. J. Chromatogr. A 1116, 1–9 (2006)CrossRefGoogle Scholar
  22. 22.
    Fu, L., Liu, X., Hu, J., Zhao, X., Wang, H., Huang, C., Wang, X.: Determination of two pesticides in soils by dispersive liquid–liquid microextraction combined with LC-fluorescence detection. Chromatographia 70, 1697–1701 (2009)CrossRefGoogle Scholar
  23. 23.
    Farajzadeh, M.A., Seyedi, S.E., Safi Shalamzari, M., Bamorowat, M.: Dispersive liquid–liquid microextraction using extraction solvent lighter than water. J. Sep. Sci. 32, 3191–3200 (2009)CrossRefGoogle Scholar
  24. 24.
    Zhou, Q., Bai, H., Xie, G., Xiao, J.: Trace determination of organophosphorus pesticides in environmental samples by temperature-controlled ionic liquid dispersive liquid-phase microextraction. J. Chromatogr. A 1188, 148–153 (2008)CrossRefGoogle Scholar
  25. 25.
    Shirkhanloo, H., Rouhollahia, A., Zavvar Mousavi, H.: Preconcentration and determination of trace amount of nickel in water and biological samples by dispersive liquid–liquid microextraction. J. Chin. Chem. Soc. 57, 1–7 (2010)Google Scholar
  26. 26.
    Hashemi, P., Hosseini, S.M., Kakanejadifard, A., Azimi, G.H., Zohrehvand, S.: Dispersive liquid–liquid microextraction of Cu(II) using a novel dioxime for its highly sensitive determination by graphite furnace atomic absorption spectrometry. J. Chin. Chem. Soc. 57, 111–117 (2010)Google Scholar
  27. 27.
    Kozani, R.R., Assadi, Y., Shemirani, F., Hosseini, M.R., Jamali, M.R.: Part-per-trillion determination of chlorobenzenes in water using dispersive liquid–liquid microextraction combined gas chromatography-electron capture detection. Talanta 72, 387–393 (2007)CrossRefGoogle Scholar
  28. 28.
    Ramalho, J.B., Ramos, N., Lucas, E.: The influence of some interfacial properties of PEO-b-PPO copolymers on dewatering of water-in-oil asphaltene model emulsions. Chem. Chem. Technol. 3, 53–58 (2009)Google Scholar
  29. 29.
    Rondon, M., Bouriat, P., Lachaise, J.: Breaking of water-in-crude oil emulsions. 1. Physicochemical phenomenology of demulsifier action. Energy Fuels 20, 1600–1604 (2006)CrossRefGoogle Scholar
  30. 30.
    Mokhtari, B., Pourabdollah, K.: Effect of crown size and upper moieties in nano-baskets of diacid calix[4]arene-1,2-crowns-3,4,5,6 on the extraction of s-block metals. J. Coord. Chem. 64, 3081–3091 (2011)CrossRefGoogle Scholar
  31. 31.
    Mokhtari, B., Pourabdollah, K.: Competitive solvent extraction of alkaline earth metals by ionizable nano-baskets of calixarene. Supramol. Chem. (2012). doi: 10.1080/10610278.2011.605452
  32. 32.
    Mokhtari, B., Pourabdollah, K.: Binding and extraction of alkali and alkaline earth metals by ionizable calix[4]arene-1,2-crown-3 conformers. J. Incl. Phenom. Macrocycl. Chem. (2012). doi: 10.1007/s10847-011-0052-1
  33. 33.
    Mokhtari, B., Pourabdollah, K.: Binding mechanisms of nano-baskets towards alkali metals. Isothermal titration calorimetric study. J. Therm. Anal. Calorim. (2012). doi: 10.1007/s10973-011-2014-7
  34. 34.
    Mokhtari, B., Pourabdollah, K.: Structure optimization of di-ionizable calixarene nano-baskets for competitive solvent extraction of alkali and alkaline earth metals. Bull. Korean Chem. Soc. 32, 3855–3860 (2011)CrossRefGoogle Scholar
  35. 35.
    Mokhtari, B., Pourabdollah, K.: Effect of crown ring size and upper moiety on the extraction of s-block metals by ionizable calixcrown nano-baskets. Bull. Korean Chem. Soc. 32, 3979–3990 (2011)CrossRefGoogle Scholar
  36. 36.
    Mokhtari, B., Pourabdollah, K., Dalali, N.: Analytical applications of calixarenes from 2005 up-to-date. J. Incl. Phenom. Macrocycl. Chem. 69, 1–55 (2011)CrossRefGoogle Scholar
  37. 37.
    Mokhtari, B., Pourabdollah, K., Dallali, N.: A review of calixarene applications in nuclear industries. J. Radioanal. Nucl. Chem. 287, 921–934 (2011)CrossRefGoogle Scholar
  38. 38.
    Mokhtari, B., Pourabdollah, K., Dalali, N.: Applications of nano-baskets of calixarenes in chromatography. Chromatographia 73, 829–847 (2011)CrossRefGoogle Scholar
  39. 39.
    Mokhtari, B., Pourabdollah, K.: Binding abilities and extractive applications of nano-baskets of calixarene. Asian J. Chem. 23, 4717–4734 (2011)Google Scholar
  40. 40.
    Mokhtari, B., Pourabdollah, K.: Medical applications of nano-baskets. J. Coord. Chem. 64, 3189–3204 (2011)CrossRefGoogle Scholar
  41. 41.
    Mokhtari, B., Pourabdollah, K.: Applications of calixarene nano-baskets in pharmacology. J. Incl. Phenom. Macrocycl. Chem. (2012). doi: 10.1007s10847-011-0062-z
  42. 42.
    Mokhtari, B., Pourabdollah, K., Dalali, N.: Molecule and ion recognition of nano-baskets of calixarenes since 2005. J. Coord. Chem. 64, 743–794 (2011)CrossRefGoogle Scholar
  43. 43.
    Mokhtari, B., Pourabdollah, K.: Solvent extraction of alkali metals by di-ionizable nano-baskets. J. Coord. Chem. 64, 4029–4053 (2011). doi: 10.1080/00958972.2011.635790 Google Scholar
  44. 44.
    Mokhtari, B., Pourabdollah, K., Dalali, N.: Solvent extraction of alkali metals by di-ionizable nano-baskets. J. Coord. Chem. 64, 4079–4087 (2011). doi: 10.1080/00958972.2011.636040 Google Scholar
  45. 45.
    Mokhtari, B., Pourabdollah, K.: Binding study of ionizable calix[4]-1,3-crowns-5,6 nano-baskets by differential pulse voltammetry. J. Electrochem. Soc. (2012). doi: 10.1149/2.048203jes
  46. 46.
    Mokhtari, B., Pourabdollah, K.: Binding survey of ionizable calix[4]-1,2-crowns-3 nano-baskets by differential pulse voltammetry. Electroanalysis (2012). doi: 10.1002/elan.201100584

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of Chemical Engineering, Shahreza BranchIslamic Azad UniversityShahrezaIran

Personalised recommendations