A new dihydrogen phosphate selective anion receptor utilizing carbazole and indole

  • Sung kyu Lee
  • Yeunkun Han
  • Yusun Choi
  • Jongmin Kang
Original Article


Dihydrogen phosphate selective anion receptor 2 based on one carbazole and two indole moieties was designed and synthesized. Fluorescence and 1H NMR titration clearly showed that receptor 2 was a good sensor in the selective recognition for dihydrogen phosphate over other anions. Receptor 2 utilized two amide hydrogens, three amine hydrogens to bind anions. These five hydrogens formed concave structure for the selective recognition of dihydrogen phosphate.

Graphical Abstract


Anion receptor Carbazole Indole Hydrogen bonds 



This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010–0021333).


  1. 1.
    Haugland, R.P.: The handbook. A guide to fluorescent probes and labeling technologies, 10th edn. Molecular Probes Inc., Eugene (2005)Google Scholar
  2. 2.
    Stibor, I. (ed.): Anion sensing. Springer, Berlin (2005)Google Scholar
  3. 3.
    Lhoták, P.: Anion receptors based on calixarenes. Top. Curr. Chem. 255, 65–95 (2005)Google Scholar
  4. 4.
    Matthews, S.E., Beer, P.D.: Calixarene-based anion receptors. Supramol. Chem 17, 411–435 (2005)CrossRefGoogle Scholar
  5. 5.
    Martinez-Manez, R., Sancenon, F.: Fluorogenic and chromogenic chemosensors and reagents for anions. Chem. Rev. 103, 4419–4476 (2003)CrossRefGoogle Scholar
  6. 6.
    Beer, P.D., Gale, P.A.: Anion recognition and sensing: the state of the art and future perspectives. Angew. Chem. Int. Ed. 40, 486–516 (2001)CrossRefGoogle Scholar
  7. 7.
    Hartley, J.H., James, T.D., Ward, C.J.: Synthetic receptors. J. Chem. Soc., Perkin. Trans. 1 19, 3155–3184 (2000)CrossRefGoogle Scholar
  8. 8.
    de Silva, A.P., Nimal Gunaratne, H.Q., Gunnlaugsson, T., Huxley, A.J.M., McCoy, C.P., Rademacher, J.T., Rice, T.E.: Signaling recognition events with fluorescent sensors and switches. Chem. Rev. 97, 1515–1566 (1997)CrossRefGoogle Scholar
  9. 9.
    Czarnik, A.W. (ed.): Fluorescent chemosensors for ion and molecule recognition. American Chemical Society Books, Washington, DC (1993)Google Scholar
  10. 10.
    Bao, X., Zhou, Y.: Synthesis and recognition properties of a class of simple colorimetric anion chemosensors containing OH and CONH groups. Sens. Actuators B Chem. 147, 434–441 (2010)CrossRefGoogle Scholar
  11. 11.
    Chmielewski, M.J., Jurczak, J.: Anion recognition by neutral macrocyclic amides. Chem. Eur. J 11, 6080–6094 (2005)CrossRefGoogle Scholar
  12. 12.
    Kondo, S.–.I., Hiraoka, Y., Kurumatani, N., Yano, Y.: Selective recognition of dihydrogen phosphate by receptors bearing pyridyl moieties as hydrogen bond acceptors. Chem. Commun. 13, 1720–1722 (2005)CrossRefGoogle Scholar
  13. 13.
    Xie, H., Yi, S., Wu, S.: Study on host-guest complexation of anions based on tri-podal naphthylthiourea derivatives. J. Chem. Soc., Perkin. Trans. 2, 2751–2754 (1999)Google Scholar
  14. 14.
    Sessler, J.L., An, D., Cho, W–.S., Lynch, V., Marquez, M.: Calix[n]bispyrrolylbenzenes: synthesis, characterization, and preliminary anion binding studies. Chem. Eur. J. 11, 2001–2011 (2005)CrossRefGoogle Scholar
  15. 15.
    Chellappan, K., Singh, N.J., Hwang, I–.C., Lee, J.W., Kim, K.S.: A calix[4]imidazolium[2]pyridine as an anion receptor. Angew. Chem. Int. Ed. 44, 2899–2903 (2005)CrossRefGoogle Scholar
  16. 16.
    Nishiyabu, R., Anzenbacher Jr, P.J.: Sensing of antipyretic carboxylates by simple chromogenic calix[4]pyrroles. Am. Chem. Soc. 127, 8270–8271 (2005)CrossRefGoogle Scholar
  17. 17.
    Kang, S.O., Linares, J.M., Powell, D., VanderVelde, D., Bowman-James, K.: New polyamide cryptand for anion binding. J. Am. Chem. Soc. 125, 10152–10153 (2003)CrossRefGoogle Scholar
  18. 18.
    Boiocchi, M., Boca, L.D., Gomez, D.E., Fabbrizzi, L., Licchelli, M., Monzani, E.J.: Nature of urea-fluoride interaction: incipient and definitive proton transfer. Am. Chem. Soc. 126, 16507–16514 (2004)CrossRefGoogle Scholar
  19. 19.
    Kwon, J.Y., Jang, Y.J., Kim, S.K., Lee, K.H., Kim, J.S., Yoon, J.Y.: Unique hydrogen bonds between 9-anthracenyl hydrogen and anions. J. Org. Chem. 69, 5155–5157 (2004)CrossRefGoogle Scholar
  20. 20.
    Ayling, A.J., Perez-Payan, M.N., Davis, A.P.: New “cholapod” anionophores; high-affinity halide receptors derived from cholic acid. J. Am. Chem. Soc. 123, 12716–12717 (2001)CrossRefGoogle Scholar
  21. 21.
    Werner, F., Schneider, H–.J.: Complexation of anions including nucleotide anions by open-chain host compounds with amide, urea, and aryl functions. Helv. Chim. Acta. 83, 465–478 (2000)CrossRefGoogle Scholar
  22. 22.
    Snellink-Ruel, B. H. M., Antonisse, M. M. G., Engbersen, J. F. J., Timmerman, P., Reinhoudt, D. N.: Neutral anion receptors with multiple urea-binding sites. Eur. J. Org. Chem. 165–170 (2000)Google Scholar
  23. 23.
    Pfeffer, F.M., Gunnlaugsson, T., Jensen, P., Kruger, P.E.: Anion recognition using preorganized thiourea functionalized [3]polynorbornane receptors. Org. Lett. 7, 5357–5360 (2005)CrossRefGoogle Scholar
  24. 24.
    Liu, S.Y., Fang, L., He, Y.B., Chan, W.H., Yeung, K.T., Cheng, Y.K., Yang, R.H.: Cholic-acid-based fluorescent sensor for dicarboxylates and acidic amino acids in aqueous solutions. Org. Lett. 7, 5825–5828 (2005)CrossRefGoogle Scholar
  25. 25.
    Gunnlaugsson, T., Davis, A.P., O’Brien, J.E., Glynn, M.: Synthesis and photophysical evaluation of charge neutral thiourea or urea based fluorescent PET sensors for bis-carboxylates and pyrophosphate. Org. Biomol. Chem. 3, 48–56 (2005)CrossRefGoogle Scholar
  26. 26.
    Kim, S.K., Singh, N.J., Kim, S.J., Swamy, K.M.K., Kim, S.H., Lee, K.H., Kim, K.S., Yoon, J.: Anthracene derivatives bearing two urea groups as fluorescent receptors for anions. Tetrahedron 61, 4545–4550 (2005)CrossRefGoogle Scholar
  27. 27.
    Gunnlaugsson, T., Davis, A.P., Hussey, G.M., Tierney, J., Glynn, M.: Design, synthesis and photophysical studies of simple fluorescent anion PET sensors using charge neutral thiourea receptors. Org. Biomol. Chem. 2, 1856–1863 (2004)CrossRefGoogle Scholar
  28. 28.
    Dryfe, R.A.W., Hill, S.S., Davis, A.P., Joos, J.-B., Roberts, E.P.L.: Electrochemical quantification of high-affinity halide binding by a steroid-based receptor. Org. Biomol. Chem. 2, 2716–2718 (2004)CrossRefGoogle Scholar
  29. 29.
    Benito, J.M., Gómez-García, M., Blanco, J.L.J., Mellet, C.O., Fernández, J.M.G.J.: Carbohydrate-based receptors with bultiple thiourea binding sites. Multipoint hydrogen bond recognition of dicarboxylates and monosaccharides. Org. Chem. 66, 1366–1372 (2001)CrossRefGoogle Scholar
  30. 30.
    Bühlmann, P., Nishizawa, S., Xiao, K.P., Umezawa, Y.: Strong hydrogen bond-mediated complexation of H2P04- by neutral bis-thiourea hosts. Tetrahedron 53, 1647–1654 (1997)CrossRefGoogle Scholar
  31. 31.
    Fan, E., Van Arman, S.A., Kincaid, S., Hamilton, A.D.: Molecular recognition: hydrogen-bonding receptors that function in highly competitive solvents. J. Am. Chem. Soc. 115, 369–370 (1993)CrossRefGoogle Scholar
  32. 32.
    Yoon, J., Kim, S.K., Singh, N.J., Kim, K.S.: Imidazolium receptors for the recognition of anions. Chem. Soc. Rev. 35, 355–360 (2006)CrossRefGoogle Scholar
  33. 33.
    Wichmann, K., Antonioli, B., Söhnel, T., Wenzel, M., Gloe, K., Gloe, K., Price, J.R., Lindoy, L.F., Blake, A.J., Schröder, M.: Polyamine-based anion receptors: extraction and structural studies. Coord. Chem. Rev. 250, 2987–3003 (2006)CrossRefGoogle Scholar
  34. 34.
    Amendola, V., Boiocchi, M., Fabbarizzi, L., Palchetti, A.: Anion receptors containing -NH binding sites: hydrogen-bond formation or neat proton transfer? Chem. Eur. J. 11, 120–127 (2005)CrossRefGoogle Scholar
  35. 35.
    Breccia, P., Van Gool, M., Pe’rez-Ferna’nedz, R., Martı’n-Santamaria, S., Gago, F., Prados, P., de Mendoza, J.: Guanidinium receptors as enantioselective amino acid membrane carriers. J. Am. Chem. Soc. 125, 8270–8284 (2003)CrossRefGoogle Scholar
  36. 36.
    Metzer, A., Gloe, K., Stephan, H., Schmidtchen, F.P.: Molecular recognition and phase transfer of underivatized amino acids by a foldable artificial host. J. Org. Chem. 61, 2051–2055 (1996)CrossRefGoogle Scholar
  37. 37.
    Wong, M.S., Xia, P.F., Zhang, X.L., Lo, P.K., Cheng, Y.-K., Yeung, K.-T., Guo, X., Shuang, S.M.: Facile synthesis of oligophenylene-substituted calix[4]arenes and their enhanced binding properties. J. Org. Chem. 70, 2816–2819 (2005)CrossRefGoogle Scholar
  38. 38.
    Wright, A.T., Anslyn, E.V.: Cooperative metal-coordination and ion pairing in tripeptide recognition. Org. Lett 6, 1341–1344 (2004)CrossRefGoogle Scholar
  39. 39.
    Pfeffer, F.M., Lim, D.F., Sedgwick, K.J.: Indole as a scaffold for anion recognition. Org. Biomol. Chem. 5, 1795–1799 (2007)CrossRefGoogle Scholar
  40. 40.
    Bates, G.W., Gale, P.A., Light, M.E.: Isophthalamides and 2,6-dicarboxamidopyridines with pendant indole groups: a ‘twisted’ binding mode for selective fluoride recognition. Chem. Commun. 21, 2121–2123 (2007)CrossRefGoogle Scholar
  41. 41.
    Sessler, J.L., Cho, D.-G., Lynch, V.: Diindolylquinoxalines: effective indole-based receptors for phosphate anion. J. Am. Chem. Soc. 128, 16518–16519 (2006)CrossRefGoogle Scholar
  42. 42.
    Curiel, D., Cowley, A., Beer, P.D.: Indolocarbazoles: a new family of anion sensors. Chem. Commun. 14, 236–238 (2005)CrossRefGoogle Scholar
  43. 43.
    Chang, K.-J., Moon, D., Lah, M.S., Jeong, K.-S.: Indole-based macrocycles as a class of receptors for anions. Angew. Chem. Int. Ed. 44, 7926–7929 (2005)CrossRefGoogle Scholar
  44. 44.
    Chang, K.-J., Kang, B.-N., Lee, M.-H., Jeong, K.-S.: Oligoindole-based foldamers with a helical conformation induced by chloride. J. Am. Chem. Soc. 127, 12214–12215 (2005)CrossRefGoogle Scholar
  45. 45.
    Kwon, T.H., Jeong, K.-S.: A molecular receptor that selectively binds dihydrogen phosphate. Tetrahedron Lett. 47, 8539–8541 (2006)CrossRefGoogle Scholar
  46. 46.
    Chang, K.-J., Chae, M.K., Lee, C., Lee, J.-Y., Jeong, K.-S.: Biindolyl-based molecular clefts that bind anions by hydrogen-bonding interactions. Tetrahedron Lett. 47, 6385–6388 (2006)CrossRefGoogle Scholar
  47. 47.
    Yu, J.O., Browning, C.S., Farrar, D.H.: Tris-2-(3-methyl indolyl) phosphine as an anion receptor. Chem. Commun. 48, 1020–1022 (2008)CrossRefGoogle Scholar
  48. 48.
    Bates, G.W., Light, M.E., Triyanti, Albrecht, M., Gale, P.A.: 2,7-Functionalized indoles as receptors for anions. J. Org. Chem. 72, 8921–8927 (2007)CrossRefGoogle Scholar
  49. 49.
    Hu, Z.-Q., Cui, C-Li, Lu, G.-Y., Ding, L., Yang, X.-D.: A highly selective fluorescent chemosensor for fluoride based on an anthracene diamine derivative incorporating indole. Sens. Actuators B Chem. 141, 200–204 (2009)CrossRefGoogle Scholar
  50. 50.
    Job, P.: Formation and stability of inorganic complexes in solution. Ann. Chim. 9, 113–203 (1928)Google Scholar
  51. 51.
    Benesi, H.A., Hildebrand, J.H.: A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J. Am. Chem. Soc. 71, 2703–2707 (1949)CrossRefGoogle Scholar
  52. 52.
    Hynes, M. J.: EQNMR: a computer program for the calculation of stability constants from nuclear magnetic resonance chemical shift data. J. Chem. Soc., Dalton Trans. 311–312 (1993)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Sung kyu Lee
    • 1
  • Yeunkun Han
    • 1
  • Yusun Choi
    • 1
  • Jongmin Kang
    • 1
  1. 1.Department of ChemistryInstitute for Chemical Biology, Sejong UniversitySeoulRepublic of Korea

Personalised recommendations