Skip to main content
Log in

Recognition of exterior protein surfaces using artificial ligands based on calixarenes, crown ethers, and tetraphenylporphyrins

  • Review Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Artificial ligands for recognition of exterior protein surfaces can be used for protein detection, protein modification/modulation, and protein separation. This article reviews recent developments of artificial ligands for complexation with exterior protein surfaces, with a focus on studies using calixarene-, crown ether-, and tetraphenylporphyrin-based ligands. Synthetic ligands that recognize amino acid residues can form n:1 supramolecules with proteins. 18-Crown-6 and calix[6]arene derivatives have been used for complexation with the lysine residues of proteins. By comparison, larger ligands that have a central core and multivalent functionalities at the periphery can form 1:1 supramolecules with proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Kodadek, T.: Protein microarrays: prospects and problems. Chem. Biol. 8, 105–115 (2001)

    Article  CAS  Google Scholar 

  2. Schrader, T., Koch, S.: Artificial protein sensors. Mol. Biosyst. 3, 241–248 (2007)

    Article  CAS  Google Scholar 

  3. Peczuh, M.W., Hamilton, A.D.: Peptide and protein recognition by designed molecules. Chem. Rev. 100, 2479–2494 (2000)

    Article  CAS  Google Scholar 

  4. Jones, S., Thornton, J.M.: Principles of protein–protein interactions. Proc. Nat. Acad. Sci. USA 93, 13–20 (1996)

    Article  CAS  Google Scholar 

  5. Stites, W.E.: Protein-protein interactions: interface structure, binding thermodynamics, and mutational analysis. Chem. Rev. 97, 1233–1250 (1997)

    Article  CAS  Google Scholar 

  6. Hage, D.S.: Affinity chromatography: a review of clinical applications. Clin. Chem. 45, 593–615 (1999)

    CAS  Google Scholar 

  7. Lowe, C.R., Lowe, A.R., Gupta, G.: New developments in affinity chromatography with potential application in the production of biopharmaceuticals. J. Biochem. Biophys. Methods 49, 561–574 (2001)

    Article  CAS  Google Scholar 

  8. Jain, R., Ernst, J.T., Kutzki, O., Hyung, S.P., Hamilton, A.D.: Protein recognition using synthetic surface-targeted agents. Mol. Divers. 8, 89–100 (2004)

    Article  CAS  Google Scholar 

  9. Yin, H., Hamilton, A.D.: Strategies for targeting protein–protein interactions with synthetic agents. Angew. Chem. Int. Ed. Engl. 44, 4130–4163 (2005)

    Article  CAS  Google Scholar 

  10. Hershberger, S.J., Lee, S.-G., Chmielewski, J.: Scaffolds for blocking protein–protein interactions. Curr. Top. Med. Chem. 7, 928–942 (2007)

    Article  CAS  Google Scholar 

  11. Perret, F., Coleman, A.W.: Biochemistry of anionic calix[n]arenes. Chem. Commun. 47, 7303–7319 (2011)

    Article  CAS  Google Scholar 

  12. Oshima, T., Baba, Y., Shimojo, K., Goto, M.: Recognition of lysine residues on protein surfaces using calixarenes and its application. Curr. Drug Discov. Technol. 4, 220–228 (2007)

    Article  CAS  Google Scholar 

  13. Ludwig, R.: Calixarenes for biochemical recognition and separation. Microchim. Acta 152, 1–19 (2005)

    Article  CAS  Google Scholar 

  14. Itoh, T., Takagi, Y., Tsukube, H.: Synthesis of chiral building blocks for organic synthesis via lipase- catalyzed reaction: new method of enhancing enzymatic reaction enantioselectivity. J. Mol. Catal. B Enzym. 3, 259–270 (1997)

    Article  CAS  Google Scholar 

  15. Unen, D.-J., Engbersen, J.F.J., Reinhoudt, D.N.: Studies on the mechanism of crown-ether-induced activation of enzymes in non-aqueous media. J. Mol. Catal. B Enzym. 11, 877–882 (2001)

    Article  Google Scholar 

  16. Julian, R.R., Beauchamp, J.L.: Site specific sequestering and stabilization of charge in peptides by supramolecular adduct formation with 18-crown-6 ether by way of electrospray ionization. Int. J. Mass Spectrom. 210–211, 613–623 (2001)

    Google Scholar 

  17. Frański, R., Schroeder, G., Kamysz, W., Niedzialkowski, P., Ossowski, T.: Complexes between some lysine-containing peptides and crown ethers—electrospray ionization mass spectrometric study. J. Mass Spectrom. 42, 459–466 (2007)

    Article  CAS  Google Scholar 

  18. Porath, J.: Immobilized metal ion affinity chromatography. Protein Expr. Purif. 3, 263–281 (1992)

    Article  CAS  Google Scholar 

  19. Gaberc-Porekar, V., Menart, V.: Perspectives of immobilized-metal affinity chromatography. J. Biochem. Biophys. Methods 49, 335–360 (2001)

    Article  CAS  Google Scholar 

  20. Chaga, G.S.: Twenty-five years of immobilized metal ion affinity chromatography: past, present and future. J. Biochem. Biophys. Methods 49, 313–334 (2001)

    Article  CAS  Google Scholar 

  21. Ueda, E.K.M., Gout, P.W., Morganti, L.: Current and prospective applications of metal ion-protein binding. J. Chromatogr. A 988, 1–23 (2003)

    Article  CAS  Google Scholar 

  22. Best, M.D., Tobey, S.L., Anslyn, E.V.: Abiotic guanidinium containing receptors for anionic species. Coord. Chem. Rev. 240, 3–15 (2003)

    Article  CAS  Google Scholar 

  23. Schug, K.A., Lindner, W.: Noncovalent binding between guanidinium and anionic groups: focus on biological- and synthetic-based arginine/guanidinium interactions with phosph[on]ate and sulf[on]ate residues. Chem. Rev. 105, 67–113 (2005)

    Article  CAS  Google Scholar 

  24. Fletcher, S., Hamilton, A.D.: Protein surface recognition and proteomimetics: mimics of protein surface structure and function. Curr. Opin. Chem. Biol. 9, 632–638 (2005)

    Article  CAS  Google Scholar 

  25. Fletcher, S., Hamilton, A.D.: Targeting protein–protein interactions by rational design: mimicry of protein surfaces. J. R. Soc. Interface 3, 215–233 (2006)

    Article  CAS  Google Scholar 

  26. Mulder, A., Huskens, J., Reinhoudt, D.N.: Multivalency in supramolecular chemistry and nanofabrication. Org. Biomol. Chem. 2, 3409–3424 (2004)

    Article  CAS  Google Scholar 

  27. Ludden, M.J.W., Reinhoudt, D.N., Huskens, J.: Molecular printboards: versatile platforms for the creation and positioning of supramolecular assemblies and materials. Chem. Soc. Rev. 35, 1122–1134 (2006)

    Article  CAS  Google Scholar 

  28. Baldini, L., Casnati, A., Sansone, F., Ungaro, R.: Calixarene-based multivalent ligands. Chem. Soc. Rev. 36, 254–266 (2007)

    Article  CAS  Google Scholar 

  29. Martos, V., Castreño, P., Valero, J., de Mendoza, J.: Binding to protein surfaces by supramolecular multivalent scaffolds. Curr. Opin. Chem. Biol. 12, 698–706 (2008)

    Article  CAS  Google Scholar 

  30. Gutsche, C.D.: Monographs in Supramolecular Chemistry: Calixarenes, vol. 1. The Royal Society of Chemistry, Cambridge (1989)

    Google Scholar 

  31. Shinkai, S.: Calixarenes—the third generation of supramolecules. Tetrahedron 49, 8933–8968 (1993)

    Article  CAS  Google Scholar 

  32. Bohmer, V.: Calixarenes, macrocycles with (almost) unlimited possibilities. Angew. Chem. Int. Ed. Engl. 34, 713–745 (1995)

    Article  Google Scholar 

  33. Asfari, Z., Bohmer, V., Harrowfield, J., Vicens, J., Saadioui, M.: Calixarenes 2001. Kluwer, Dordrecht (2001)

    Google Scholar 

  34. Abraham, W.: Inclusion of organic cations by calix[n]arenes. J. Incl. Phenom. 43, 159–174 (2002)

    Article  CAS  Google Scholar 

  35. Mutihac, L., Buschmann, H.-J., Mutihac, R.-C., Schollmeyer, E.: Complexation and separation of amines, amino acids, and peptides by functionalized calix[n]arenes. J. Incl. Phenom. 51, 1–10 (2005)

    Article  CAS  Google Scholar 

  36. Coleman, A.W., Perret, F., Moussa, A., Dupin, M., Guo, Y., Perron, H.: Calix[n]arenes as protein sensors. Top. Curr. Chem. 277, 31–88 (2007)

    Article  CAS  Google Scholar 

  37. Perret, F., Lazar, A.N., Coleman, A.W.: Biochemistry of the para-sulfonato-calix[n]arenes. Chem. Commun. 2425–2438 (2006)

  38. Memmi, L., Lazar, A., Brioude, A., Ball, V., Coleman, A.W.: Protein-calixarene interactions: complexation of bovine serum albumin by sulfonatocalix[n]arenes. Chem. Commun. 2474–2475 (2001)

  39. Da Silva, E., Ficheux, D., Coleman, A.W.: Anti-thrombotic activity of water-soluble calix[n]arenes. J. Incl. Phenom. 52, 201–206 (2005)

    Article  CAS  Google Scholar 

  40. Perret, F., Bonnard, V., Danylyuk, O., Suwinska, K., Coleman, A.W.: Conformational extremes in the supramolecular assemblies of para-sulfonato-calix[8]arene. New J. Chem. 30, 987–990 (2006)

    Article  CAS  Google Scholar 

  41. Coleman, A.W., Perret, F., Cecillon, S., Moussa, A., Martin, A., Dupin, M., Perron, H.: Enhanced detection of the pathogenic prion protein by its supramolecular association with para-sulfonato-calix[n]arene derivatives. New J. Chem. 31, 711–717 (2007)

    Article  CAS  Google Scholar 

  42. Silva, E.D., Rousseau, C.F., Zanella-Cléon, I., Becchi, M., Coleman, A.W.: Mass spectrometric determination of association constants of bovine serum albumin (BSA) with para-Sulphonato-calix[n]arene derivatives. J. Incl. Phenom. 54, 53–59 (2006)

    Article  CAS  Google Scholar 

  43. Lamartine, R., Tsukada, M., Wilson, D., Shirata, A.: Antimicrobial activity of calixarenes. C. R. Chim. 5, 163–169 (2002)

    Article  CAS  Google Scholar 

  44. Mecca, T., Consoli, G.M.L., Geraci, C., Cunsolo, F.: Designed calix[8]arene-based ligands for selective tryptase surface recognition. Bioorg. Med. Chem. 12, 5057–5062 (2004)

    Article  CAS  Google Scholar 

  45. Francese, S., Cozzolino, A., Caputo, I., Esposito, C., Martino, M., Gaeta, C., Troisi, F., Neri, P.: Transglutaminase surface recognition by peptidocalix[4]arene diversomers. Tetrahedron Lett. 46, 1611–1615 (2005)

    Article  CAS  Google Scholar 

  46. Chini, M.G., Terracciano, S., Riccio, R., Bifulco, G., Ciao, R., Gaeta, C., Troisi, F., Neri, P.: Conformationally locked calixarene-based histone deacetylase inhibitors. Org. Lett. 12, 5382–5385 (2010)

    Article  CAS  Google Scholar 

  47. Vovk, A.I., Kononets, L.A., Tanchuk, V.Yu., Cherenok, S.O., Drapailo, A.B., Kalchenko, V.I., Kukhar, V.P.: Inhibition of Yersinia protein tyrosine phosphatase by phosphonate derivatives of calixarenes. Bioorg. Med. Chem. Lett. 20, 483–487 (2010)

    Article  CAS  Google Scholar 

  48. Sansone, F., Chierici, E., Casnati, A., Ungaro, R.: Thiourea-linked upper rim calix[4]arene neoglycoconjugates: synthesis, conformations and binding properties. Org. Biomol. Chem. 1, 1802–1809 (2003)

    Article  CAS  Google Scholar 

  49. Casnati, A., Sansone, F., Ungaro, R.: Peptido- and glycocalixarenes: playing with hydrogen bonds around hydrophobic cavities. Acc. Chem. Res. 36, 246–254 (2003)

    Article  CAS  Google Scholar 

  50. André, S., Sansone, F., Kaltner, H., Casnati, A., Kopitz, J., Gabius, H.-J., Ungaro, R.: Calix[n]arene-based glycoclusters: bioactivity of thiourea-linked galactose/lactose moieties as inhibitors of binding of medically relevant lectins to a glycoprotein and cell-surface glycoconjugates and selectivity among human adhesion/growth-regulatory galectins. ChemBioChem 9, 1649–1661 (2008)

    Article  CAS  Google Scholar 

  51. Sansone, F., Baldini, L., Casnati, A., Ungaro, R.: Calixarenes: from biomimetic receptors to multivalent ligands for biomolecular recognition. New J. Chem. 34, 2715–2728 (2010)

    Article  CAS  Google Scholar 

  52. Consoli, G.M.L., Cunsolo, F., Geraci, C., Sgarlata, V.: Synthesis and lectin binding ability of glycosamino acid-calixarenes exposing GlcNAc clusters. Org. Lett. 6, 4163–4166 (2004)

    Article  CAS  Google Scholar 

  53. Dondoni, A., Marra, A.: C-glycoside clustering on calix[4]arene, adamantane, and benzene scaffolds through 1, 2, 3-triazole linkers. J. Org. Chem. 71, 7546–7557 (2006)

    Article  CAS  Google Scholar 

  54. Marra, A., Moni, L., Pazzi, D., Corallini, A., Bridi, D., Dondoni, A.: Synthesis of sialoclusters appended to calix[4]arene platforms via multiple azide-alkyne cycloaddition. New inhibitors of hemagglutination and cytopathic effect mediated by BK and influenza A viruses. Org. Biomol. Chem. 6, 1396–1409 (2008)

    Article  CAS  Google Scholar 

  55. Meunier, S.J., Roy, R.: Polysialosides scaffolded on p-tert-butylcalix[4]arene. Tetrahedron Lett. 37, 5469–5472 (1996)

    Google Scholar 

  56. Roy, R., Kim, J.M.: Amphiphilic p-tert-butylcalix[4]arene scaffolds containing exposed carbohydrate dendrons. Angew. Chem. Int. Ed. 38, 369–372 (1999)

    Article  CAS  Google Scholar 

  57. Cecioni, S., Lalor, R., Blanchard, B., Praly, J.-P., Imberty, A., Matthews, S.E., Vidal, S.: Achieving high affinity towards a bacterial lectin through multivalent topological isomers of calix[4]arene glycoconjugates. Chem. Eur. J. 15, 13232–13240 (2009)

    Article  CAS  Google Scholar 

  58. Cecioni, S., Faure, S., Darbost, U., Bonnamour, I., Parrot-Lopez, H., Roy, O., Taillefumier, C., Wimmerová, M., Praly, J.-P., Imberty, A., Vidal, S.: Selectivity among two lectins: probing the effect of topology, multivalency and flexibility of “clicked” multivalent glycoclusters. Chem. Eur. J. 17, 2146–2159 (2011)

    Article  CAS  Google Scholar 

  59. Hamuro, Y., Calama, M.C., Park, H.S., Hamilton, A.D.: A calixarene with four peptide loops: an antibody mimic for recognition of protein surfaces. Angew. Chem. Int. Ed. Engl. 36, 2680–2683 (1997)

    Article  CAS  Google Scholar 

  60. Sebti, S.M., Hamilton, A.D.: Design of growth factor antagonists with antiangiogenic and antitumor properties. Oncogene 19, 6566–6573 (2000)

    Article  CAS  Google Scholar 

  61. Lin, Q., Hamilton, A.D.: Design and synthesis of multiple-loop receptors based on a calix[4] arene scaffold for protein surface recognition. C. R. Chim. 5, 441–450 (2002)

    Article  CAS  Google Scholar 

  62. Wei, Y., McLendon, G.L., Hamilton, A.D., Case, M.A., Purring, C.B., Lin, Q., Park, H.S., Lee, C.-S., Yu, T.: Disruption of protein–protein interactions: design of a synthetic receptor that blocks the binding of cytochrome c to cytochrome c peroxidase. Chem. Commun. 1580–1581 (2001)

  63. Park, H.S., Lin, Q., Hamilton, A.D.: Protein surface recognition by synthetic receptors: a route to novel submicromolar inhibitors for α-chymotrypsin. J. Am. Chem. Soc. 121, 8–13 (1999)

    Article  CAS  Google Scholar 

  64. Park, H.S., Lin, Q., Hamilton, A.D.: Modulation of protein–protein interactions by synthetic receptors: design of molecules that disrupt serine protease-proteinaceous inhibitor interaction. Proc. Nat. Acad. Sci. USA 99, 5105–5109 (2002)

    Article  CAS  Google Scholar 

  65. Blaskovich, M.A., Lin, Q., Delarue, F.L., Sun, J., Park, H.S., Coppola, D., Hamilton, A.D., Sebti, S.M.: Design of GFB-111, a platelet-derived growth factor binding molecule with antiangiogenic and anticancer activity against human tumors in mice. Nat. Biotechnol. 18, 1065–1070 (2002)

    Google Scholar 

  66. Oshima, T., Goto, M., Furusaki, S.: Complex formation of cytochrome c with a calixarene carboxylic acid derivative: a novel solubilization method for biomolecules in organic media. Biomacromolecules 3, 438–444 (2002)

    Article  CAS  Google Scholar 

  67. Shimojo, K., Watanabe, J., Oshima, T., Goto, M.: Protein extraction by calix[6]arene in aliphatic organic solvent. Solvent Extr. Res. Dev. Jpn. 10, 185–189 (2003)

    CAS  Google Scholar 

  68. Oshima, T., Goto, M., Furusaki, S.: Extraction behavior of amino acids by calix[6]arene carboxylic acid derivative. J. Incl. Phenom. 43, 77–86 (2002)

    Article  CAS  Google Scholar 

  69. Oshima, T., Inoue, K., Furusaki, S., Goto, M.: Liquid membrane transport of amino acids by a calix[6]arene carboxylic acid derivative. J. Membr. Sci. 217, 87–97 (2003)

    Article  CAS  Google Scholar 

  70. Oshima, T., Inoue, K., Uezu, K., Goto, M.: Dominant factors affecting extraction behavior of amino compounds by a calix[6]arene carboxylic acid derivative. Anal. Chim. Acta 509, 137–144 (2004)

    Article  CAS  Google Scholar 

  71. Shimojo, Oshima, K., Goto, M.: Calix[6]arene acetic acid extraction behavior and specificity with respect to nucleobases. Anal. Chim. Acta 521, 163–171 (2004)

    Article  CAS  Google Scholar 

  72. Oshima, T., Oishi, K., Ohto, K., Inoue, K.: Extraction behavior of catecholamines by calixarene carboxylic acid derivatives. J. Incl. Phenom. 55, 79–85 (2006)

    Article  CAS  Google Scholar 

  73. Mohsin, M.A., Banica, F.-G., Oshima, T., Hianik, T.: Electrochemical impedance spectroscopy for assessing the recognition of cytochrome c by immobilized calixarenes. Electroanalysis 23, 1229–1235 (2011)

    Article  CAS  Google Scholar 

  74. An, W.T., Jiao, Y., Sun, X.H., Dong, C., Shuang, S.M., Xia, P.F., Wong, M.S.: Protein surface recognition of the novel tetra-carboxylphenyl calix[4]arene to cytochrome c. Chin. Chem. Lett. 19, 1341–1344 (2008)

    Article  CAS  Google Scholar 

  75. An, W.T., Jiao, Y., Sun, X.H., Zhang, X.L., Dong, C., Shuang, S.M., Xia, P.F., Wong, M.S.: Synthesis and binding properties of carboxylphenyl-modified calix[4]arenes and cytochrome c. Talanta 79, 54–61 (2009)

    Article  CAS  Google Scholar 

  76. Oshima, T., Higuchi, H., Ohto, K., Inoue, K., Goto, M.: Protein extraction and stripping with calixarene derivatives. J. Ion Exch. 14, 373–376 (2003)

    Article  Google Scholar 

  77. Oshima, T., Higuchi, H., Ohto, K., Inoue, K., Goto, M.: Selective extraction and recovery of cytochrome c by liquid–liquid extraction using a calix[6]arene carboxylic acid derivative. Langmuir 21, 7280–7284 (2005)

    Article  CAS  Google Scholar 

  78. Martínez-Aragón, M., Goetheer, E.L.V., de Haan, A.B.: Host-guest extraction of immunoglobulin G using calix[6]arenas. Sep. Purif. Technol. 65, 73–78 (2009)

    Article  CAS  Google Scholar 

  79. Shimojo, K., Oshima, T., Naganawa, H., Goto, M.: Calixarene-assisted protein refolding via liquid–liquid extraction. Biomacromolecules 8, 3061–3066 (2007)

    Article  CAS  Google Scholar 

  80. Oshima, T., Sato, M., Shikaze, Y., Ohto, K., Inoue, K., Baba, Y.: Enzymatic polymerization of o-phenylendiamine with cytochrome c activated by a calixarene derivative in organic media. Biochem. Eng. J. 35, 66–70 (2007)

    Article  CAS  Google Scholar 

  81. Semedo, M.C., Karmali, A., Barata, P.D., Prata, J.V.: Extraction of hemoglobin with calixarenes and biocatalysis in organic media of the complex with pseudoactivity of peroxidase. J. Mol. Catal. B: Enzym. 62, 96–103 (2010)

    Article  CAS  Google Scholar 

  82. Pedersen, C.J.: The discovery of crown ethers. Science 241, 536–540 (1988)

    Article  CAS  Google Scholar 

  83. Cram, D.J.: The design of molecular hosts, guests, and their complexes. Science 240, 760–767 (1988)

    Article  CAS  Google Scholar 

  84. Izatt, R.M., Pawlak, K., Bradshaw, J.S., Bruening, R.L.: Thermodynamic and kinetic data for macrocycle interaction with cations, anions, and neutral molecules. Chem. Rev. 95, 2529–2586 (1995)

    Article  CAS  Google Scholar 

  85. Buschmann, H.-J., Mutihac, L., Jansen, K.: Complexation of some amine compounds by macrocyclic receptors. J. Incl. Phenom. 39, 1–11 (2001)

    Article  CAS  Google Scholar 

  86. Izatt, R.M., Lamb, J.D., Izatt, N.E., Rossiter Jr., B.E., Christensen, J.J., Haymore, B.L.: A calorimetric titration study of the reaction of several organic ammonium cations with 18-crown-6 in methanol. J. Am. Chem. Soc. 101, 6273–6276 (1979)

    Article  CAS  Google Scholar 

  87. Odell, B., Earlam, G.: Dissolution of proteins in organic solvents using macrocyclic polyethers: association constants of a cytochrome c-[1,2-14C2]-18- crown-6 complex in methanol. J. Chem. Soc. Chem. Commun. 359–361 (1985)

  88. Bowyer, J.R., Odell, B.: Solubilisation of ferricytochrome C in methanol using a crown ether: absorption, circular dichroism and EPR spectral properties, Biochem. Biophys. Res. Commun. 127, 828–835 (1985)

    Article  CAS  Google Scholar 

  89. Reinhoudt, D.N., Eendebak, A.M., Nijenhuis, W.F., Verboom, W., Kloosterman, M., Schoemaker, H.E.: The effect of crown ethers on enzyme-catalysed reactions in organic solvents. J. Chem. Soc. Chem. Commun. 399–400 (1989)

  90. Broos, J., Sakodinskaya, I.K., Engbersen, J.F.J., Verboom, W., Reinhoudt, D.N.: Large activation of serine proteases by pretreatment with crown ethers. J. Chem. Soc. Chem. Commun. 255–256 (1995)

  91. Engbersen, J.F.J., Broos, J., Verboom, W., Reinhoudt, D.N.: Effects of crown ethers and small amount of cosolvent on the activity and enantioselectivity of α–chymotrypsin in organic solvents. Pure Appl. Chem. 68, 2171–2178 (1996)

    Article  CAS  Google Scholar 

  92. Van Unen, D.-J., Sakodinskaya, I.K., Engbersen, J.F.J., Reinhoudt, D.N.: Crown ether activation of cross-linked subtilisin Carlsberg crystals in organic solvents. J. Chem. Soc. Perkin Trans. 1, 3341–3343 (1998)

    Google Scholar 

  93. Van Unen, D.-J., Engbersen, J.F.J., Reinhoudt, D.N.: Large acceleration of α-chymotrypsin-catalyzed dipeptide formation by 18-crown-6 in organic solvents. Biotechnol. Bioeng. 59, 553–556 (1998)

    Article  Google Scholar 

  94. Itoh, T., Takagi, Y., Murakami, T., Hiyama, Y., Tsukube, H.: Crown ethers as regulators of enzymatic reactions: Enhanced reaction rate and enantioselectivity in lipase-catalyzed hydrolysis of 2-cyano-1-methylethyl acetate. J. Org. Chem. 61, 2158–2163 (1996)

    Article  CAS  Google Scholar 

  95. Takagi, Y., Teramoto, J., Kihara, H., Itoh, T., Tsukube, H.: Thiacrown ether as regulator of lipase-catalyzed trans-esterification in organic media: practical optical resolution of allyl alcohols. Tetrahedron Lett. 37, 4991–4992 (1996)

    Article  CAS  Google Scholar 

  96. Tsukube, H., Yamada, T., Shinoda, S.: Crown ether strategy toward chemical activation of biological protein functions. J. Heterocycl. Chem. 38, 1401–1408 (2001)

    Article  CAS  Google Scholar 

  97. Unen, D.-J., Engbersen, J.F.J., Reinhoudt, D.N.: Why do crown ethers activate enzymes in organic solvents. Biotechnol. Bioeng. 77, 248–255 (2002)

    Article  CAS  Google Scholar 

  98. Yamada, T., Shinoda, S., Kikawa, K., Ichimura, A., Teraoka, J., Takui, T., Tsukube, H.: Supramolecular complex of cytochrome c with lariat ether: solubilization, redox behavior and catalytic activity of cytochrome c in methanol. Inorg. Chem. 39, 3049–3056 (2000)

    Article  CAS  Google Scholar 

  99. Paul, D., Suzumura, A., Sugimoto, H., Teraoka, J., Shinoda, S., Tsukube, H.: Chemical activation of cytochrome c proteins via crown ether complexation: cold-active synzymes for enantiomer-selective sulfoxide oxidation in methanol. J. Am. Chem. Soc. 125, 11478–11479 (2003)

    Article  CAS  Google Scholar 

  100. Suzumura, A., Paul, D., Sugimoto, H., Shinoda, S., Julian, R.R., Beauchamp, J.L., Teraoka, J., Tsukube, H.: Cytochrome c-crown ether complexes as supramolecular catalysts: cold-active synzymes for asymmetric sulfoxide oxidation in methanol. Inorg. Chem. 44, 904–910 (2005)

    Article  CAS  Google Scholar 

  101. Ly, T., Julian, R.R.: Using ESI-MS to probe protein structure by site-specific noncovalent attachment of 18-crown-6. J. Am. Soc. Mass Spectrom. 17, 1209–1215 (2006)

    Article  CAS  Google Scholar 

  102. Shimojo, K., Nakashima, K., Kamiya, N., Goto, M.: Crown ether-mediated extraction and functional conversion of cytochrome c in ionic liquids. Biomacromolecules 7, 2–5 (2006)

    Article  CAS  Google Scholar 

  103. Shimojo, K., Kamiya, N., Tani, F., Naganawa, H., Naruta, Y., Goto, M.: Extractive solubilization, structural change, and functional conversion of cytochrome c in ionic liquids via crown ether complexation. Anal. Chem. 78, 7735–7742 (2006)

    Article  CAS  Google Scholar 

  104. Oshima, T., Suetsugu, A., Baba, Y.: Extraction and separation of a lysine-rich protein by formation of supramolecule between crown ether and protein in aqueous two-phase system. Anal. Chim. Acta 674, 211–219 (2010)

    Article  CAS  Google Scholar 

  105. Kai, C., Oshima, T., Baba, Y.: Enhanced extraction of amino compounds using dicyclohexyl-18-crown-6 as a ligand in an aqueous two-phase system. Solv. Extr. Res. Dev. Jpn. 17, 83–93 (2010)

    CAS  Google Scholar 

  106. Jain, R.K., Hamilton, A.D.: Protein surface recognition by synthetic receptors based on a tetraphenylporphyrin scaffold. Org. Lett. 2, 1721–1723 (2000)

    Article  CAS  Google Scholar 

  107. Jain, R.K., Hamilton, A.D.: Designing protein denaturants: synthetic agents induce cytochrome c unfolding at low concentrations and stoichiometries. Angew. Chem. Int. Ed. Engl. 41, 641–643 (2002)

    Article  CAS  Google Scholar 

  108. Aya, T., Hamilton, A.D.: Tetrabiphenylporphyrin-based receptors for protein surfaces show sub-nanomolar affinity and enhance unfolding. Bioorg. Med. Chem. Lett. 13, 2651–2654 (2003)

    Article  CAS  Google Scholar 

  109. Wilson, A.J., Groves, K., Jain, R.K., Park, H.S., Hamilton, A.D.: Directed denaturation: room temperature and stoichiometric unfolding of cytochrome c by a metalloporphyrin dimer. J. Am. Chem. Soc. 125, 4420–4421 (2003)

    Article  CAS  Google Scholar 

  110. Groves, K., Wilson, A.J., Hamilton, A.D.: Catalytic unfolding and proteolysis of cytochrome c induced by synthetic binding agents. J. Am. Chem. Soc. 126, 12833–12842 (2004)

    Article  CAS  Google Scholar 

  111. Fletcher, S., Hamilton, A.D.: Denaturation and accelerated proteolysis of sizeable heme proteins by synthetic metalloporphyrins. New J. Chem. 31, 623–627 (2007)

    Article  CAS  Google Scholar 

  112. Baldini, L., Wilson, A.J., Hong, J., Hamilton, A.D.: Pattern-based detection of different proteins using an array of fluorescent protein surface receptors. J. Am. Chem. Soc. 126, 5656–5657 (2004)

    Article  CAS  Google Scholar 

  113. Zhou, H., Baldini, L., Hong, J., Wilson, A.J., Hamilton, A.D.: Pattern recognition of proteins based on an array of functionalized porphyrins. J. Am. Chem. Soc. 128, 2421–2425 (2006)

    Article  CAS  Google Scholar 

  114. Takashima, H., Shinkai, S., Hamachi, I.: Ru(bpy)3-based artificial receptors toward a protein surface: selective binding and efficient photoreduction of cytochrome c. Chem. Commun. 345–2346 (1999)

  115. Muldoon, J., Ashcroft, A.E., Wilson, A.J.: Selective protein-surface sensing using ruthenium(II) tris(bipyridine) complexes. Chem. Eur. J. 16, 100–103 (2010)

    Article  CAS  Google Scholar 

  116. Filby, M.H., Muldoon, J., Dabb, S., Fletcher, N.C., Ashcroft, A.E., Wilson, A.J.: Protein surface recognition using geometrically pure Ru(ii) tris(bipyridine) derivatives. Chem. Commun. 47, 559–561 (2011)

    Article  CAS  Google Scholar 

  117. Wilson, A.J., Hong, J., Fletcher, S., Hamilton, A.D.: Recognition of solvent exposed protein surfaces using anthracene derived receptors. Org. Biomol. Chem. 5, 276–285 (2007)

    Article  CAS  Google Scholar 

  118. Abul Fazal, Md., Roy, B.C., Sun, S., Mallik, S., Rodgers, K.R.: Surface recognition of a protein using designed transition metal complexes. J. Am. Chem. Soc. 123, 6283–6290 (2001)

    Article  CAS  Google Scholar 

  119. Boas, U., Heegaard, P.M.H.: Dendrimers in drug research. Chem. Soc. Rev. 33, 43–63 (2004)

    Article  CAS  Google Scholar 

  120. Braun, M., Atalick, S., Guldi, D.M., Lanig, H., Brettreich, M., Burghardt, S., Hatzimarinaki, M., Ravanelli, E., Prato, M., Van Eldik, R., Hirsch, A.: Electrostatic complexation and photoinduced electron transfer between Zn-cytochrome c and polyanionic fullerene dendrimers. Chem. Eur. J. 9, 3867–3875 (2003)

    Article  CAS  Google Scholar 

  121. Paul, D., Miyake, H., Shinoda, S., Tsukube, H.: Proteo-dendrimers designed for complementary recognition of cytochrome c: dendrimer architecture toward nanoscale protein complexation. Chem. Eur. J. 12, 1328–1338 (2006)

    Article  CAS  Google Scholar 

  122. Drechsler, U., Erdogan, B., Rotello, V.M.: Nanoparticles: scaffolds for molecular recognition. Chem. Eur. J. 10, 5570–5579 (2004)

    Google Scholar 

  123. Verma, A., Rotello, V.M.: Surface recognition of biomacromolecules using nanoparticle receptors. Chem. Commun. 303–312 (2005)

  124. De, M., Ghosh, P.S., Rotello, V.M.: Applications of nanoparticles in biology. Adv. Mater. 20, 4225–4241 (2008)

    Article  CAS  Google Scholar 

  125. Fischer, N.O., McIntosh, C.M., Simard, J.M., Rotello, V.M.: Inhibition of chymotrypsin through surface binding using nanoparticle-based receptors. Proc. Natl. Acad. Sci. USA 99, 5018–5023 (2002)

    Article  CAS  Google Scholar 

  126. You, C.-C., De, M., Han, G., Rotello, V.M.: Tunable inhibition and denaturation of α-chymotrypsin with amino acid-functionalized gold nanoparticles. J. Am. Chem. Soc. 127, 12873–12881 (2005)

    Article  CAS  Google Scholar 

  127. Bayraktar, H., Ghosh, P.S., Rotello, V.M., Knapp, M.J.: Disruption of protein–protein interactions using nanoparticles: inhibition of cytochrome c peroxidase. Chem. Commun. 1390–1392 (2006)

  128. You, C.-C., Miranda, O.R., Gider, B., Ghosh, P.S., Kim, I.-B., Erdogan, B., Krovi, S.A., Bunz, U.H.F., Rotello, V.M.: Detection and identification of proteins using nanoparticle-fluorescent polymer ‘chemical nose’ sensors. Nat. Nanotechnol. 2, 318–323 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This research is granted by the Japan Society for the Promotion of Science (JSPS) through the “Funding Program for Next Generation World-Leading Researchers (NEXT Program),” initiated by the Council for Science and Technology Policy (CSTP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuya Oshima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oshima, T., Baba, Y. Recognition of exterior protein surfaces using artificial ligands based on calixarenes, crown ethers, and tetraphenylporphyrins. J Incl Phenom Macrocycl Chem 73, 17–32 (2012). https://doi.org/10.1007/s10847-011-0088-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-011-0088-2

Keywords

Navigation