Skip to main content
Log in

pH-dependent complex formation of amino acids with β-cyclodextrin and quaternary ammonium β-cyclodextrin

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Stability constants for the complexes of anionic, neutral (zwitterionic) and protonated forms of l- and d-enantiomers of eight amino acids with β-cyclodextrin and the positively charged quaternary ammonium β-cyclodextrin (QA-β-CD, DS = 3.6 ± 0.3) have been determined by spectrophotometric and pH-potentiometric methods. The highest stability constants have been obtained for the aromatic amino acids phenylalanine, tyrosine and tryptophan. Except the dianion of tyrosine and QA-β-CD, values for the anions in the range of 80–120 have been found, the stability constants for the zwitterionic forms are much smaller and complex formation is negligible with the protonated species. In the case of the other amino acids the differences are less pronounced. The results are interpreted in terms of hydrogen bonding, steric effects and electrostatic interactions between the amino acid moiety and the rims of the cyclodextrins, in addition to the inclusion of the side chain, and are supported by 1H and 13C NMR investigations on the systems containing l-phenylalanine and l-tyrosine. The differences between the complex formation constants of the l- and d-enantiomers do not exceed the limits of experimental error in most cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Szejtli, J.: Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 98, 1743–1753 (1998)

    Article  CAS  Google Scholar 

  2. Gelb, R.J., Schwartz, L.M., Cardelino, B., Fuhrman, H.S., Johnson, R.F., Laufer, D.A.: Binding mechanisms in cyclohexaamylose complexes. J. Am. Chem. Soc. 103, 1750–1757 (1981)

    Article  CAS  Google Scholar 

  3. Rekharsky, M.V., Inoue, Y.: Complexation and chiral recognition thermodynamics of 6-amino-6-deoxy-β-cyclodextrin with anionic, cationic and neutral chiral guests. J. Am. Chem. Soc. 124, 813–826 (2002)

    Article  CAS  Google Scholar 

  4. Buvári, Á., Barcza, L.: The effect of hydrogen bonds on the inclusion complex formation of β-cyclodextrin. Acta Chim. Hung. 126, 455–462 (1989)

    Google Scholar 

  5. Duchêne, D.: New Trends in Cyclodextrins and Derivatives. Edition de Santé, Paris (1991)

    Google Scholar 

  6. Kitae, T., Nakayama, T., Kano, K.: Chiral recognition of α-amino acids by charged cyclodextrins through cooperative effects of Coulomb interaction and inclusion. J. Chem. Soc. Perkin Trans. 2, 207–212 (1998)

    Google Scholar 

  7. Deratani, A., Lelievre, G., Maraldo, T., Sebille, B.: 2-hydroxy-3-trimethylammoniopropyl derivatives of cyclomaltoheptaose as phase-transfer catalysts. Carbohydr. Res. 192, 215–222 (1989)

    Article  CAS  Google Scholar 

  8. Wang, F., Khaledi, M.G.: Nonaqueous capillary electrophoresis chiral separations with quaternary ammonium β-cyclodextrin. J. Chromatogr. A 817, 121–128 (1998)

    Article  CAS  Google Scholar 

  9. Süβ, F., Poppitz, W., Scriba, G.K.E.: Separation of dipeptide and tripeptide enantiomers in capillary electrophoresis by cationic cyclodextrin derivative 2-hydroxypropyltrimethyl-ammonium-β-cyclodextrin and by neutral β-cyclodextrin derivatives at alkaline pH. J. Sep. Sci. 25, 1147–1154 (2002)

    Article  Google Scholar 

  10. Nair, U.B., Armstrong, D.W.: Evaluation of two amine-functionalized cyclodextrins as chiral selectors in capillary electrophoresis. Microchem. J. 57, 199–217 (1997)

    Article  CAS  Google Scholar 

  11. Szejtli, J.: Cyclodextrin Technology. Kluwer, Dordrecht/Boston/London (1988)

    Google Scholar 

  12. Shimpi, S., Chauhan, B., Shimpi, P.: Cyclodextrins: application in different routes of drug administration. Acta Pharm. 55, 139–156 (2005)

    CAS  Google Scholar 

  13. Linde, G.A., Laverde Jr, A., de Faria, E.V., Colanto, N.B., de Moraes, F.F., Zanin, G.M.: The use of 2D NMR to study β-cyclodextrin complexation and debittering of amino acids and peptides. Food Res. Int. 43, 187–192 (2010)

    Article  CAS  Google Scholar 

  14. Ramanathan, R., Prokai, L.: Electrospray ionization mass spectrometric study of encapsulation of amino acids by cyclodextrin. J. Am. Soc. Mass Spectrom. 6, 866–871 (1995)

    Article  CAS  Google Scholar 

  15. Mrozek, J., Barnecki, B., Karolczak, J., Wiczk, W.: Influence of the separation of the charged group and aromatic ring on interaction of tyrosine and phenylalanine analogues and derivatives with β-cyclodextrin. Biophys. Chem. 116, 237–250 (2005)

    Article  CAS  Google Scholar 

  16. Shanmugam, M., Ramesh, D., Nagalakshmi, V., Kavitha, R., Rajamohan, R., Stalin, T.: Host-guest interaction of l-tyrosine with β-cyclodextrin. Spectrochim. Acta A 71, 125–132 (2008)

    Article  CAS  Google Scholar 

  17. Castronuovo, G., Elia, V., Fessas, D., Giordano, A., Velleca, F.: Thermodynamics of the interaction of cyclodextrins with aromatic and α, ω-amino acids in aqueous solutions: a calorimetric study at 25 °C. Carbohydr. Res. 272, 31–39 (1995)

    Article  CAS  Google Scholar 

  18. Kumar, A., Maitra, A.: Suppression of residual hydrophobicity of amphiphilic amino acids by forming association complexes with beta-cyclodextrin. J. Indian Chem. Soc. 73, 516–519 (1996)

    CAS  Google Scholar 

  19. Rekharsky, M.V., Schwarz, F.P., Tewari, Y.B., Goldberg, R.N.: A thermodynamic study of the reaction of cyclodextrins with primary and secondary aliphatic alcohols, with d- and l-phenylalanine, and with l-phenylalanineamide. J. Phys. Chem. 98, 10282–10288 (1994)

    Article  CAS  Google Scholar 

  20. Sompornpisut, P., Deechalao, N., Vongsvivut, J.: An inclusion complex of β-cyclodextrin-l-phenylalanine: 1H NMR and molecular modelling docking studies. Sci. Asia 28, 263–270 (2002)

    Article  CAS  Google Scholar 

  21. Wick, W., Mrozek, J., Szabelski, M., Karolczak, J., Guzow, K., Malicka, J.: Determination of stoichiometry and equilibrium constants of complexes of tyrosine with cyclodextrins by time-resolved fluorescence decays. Chem. Phys. Lett. 341, 161–167 (2001)

    Article  Google Scholar 

  22. Kahle, C., Holzgrabe, U.: Determination of binding constants of cyclodextrin inclusion complexes with amino acids and dipeptides by potentiometric titration. Chirality 16, 509–515 (2004)

    Article  CAS  Google Scholar 

  23. Chisholm, C.D., Wenzel, T.J.: Enantiomeric discrimination of aromatic-containing anionic substrates using cationic cyclodextrins. Tetrahedron Asymmetr. 22, 62–68 (2011)

    Article  CAS  Google Scholar 

  24. Connors, K.A., Lipari, J.M.: Effect of cycloamyloses on apparent dissociation constants of carboxylic acids and phenols. J. Pharm. Sci. 65, 379–383 (1976)

    Article  CAS  Google Scholar 

  25. Csernák, O., Buvári-Barcza, Á., Samu, J., Barcza, L.: Uncommon interactions of aliphatic dicarboxylic acids with cyclodextrins. J. Incl. Phenom. Macrocycl. Chem. 51, 59–63 (2005)

    Article  Google Scholar 

  26. Buvári-Barcza, Á., Bodnár-Gyarmathy, D., Barcza, L.: Hydroxypropyl-β-cyclodextrins: correlation between the stability of their inclusion complexes with phenolphthalein and the degree of substitution. J. Incl. Phenom. Mol. Recognit. Chem. 18, 301–306 (1994)

    Article  Google Scholar 

  27. Buvári, Á., Barcza, L.: The interaction between phenolphthalein and 2-hydroxypropyl-beta-cyclodextrin: on the determination of the formation constants of cyclodextrin inclusion complexes. An. Quím. Int. Ed. 94, 98–100 (1998)

    Google Scholar 

  28. Martell, A.E., Smith, R.M.: Critical Stability Constants. Plenum Press, New York (1974)

    Google Scholar 

  29. Kuan, F.-H., Inoue, Y., Miyata, Y., Chûjô, R.: A 1H-N.M.R. study of the formation and structure of cyclomalto-hexaose- and heptaose and inclusion-complexes with aromatic amino acids in aqueous solution. Carbohydr. Res. 142, 329–332 (1985)

    Article  CAS  Google Scholar 

  30. Fukahori, T., Ugawa, T., Nishikawa, S.: Molecular recognition kinetics of leucine and glycyl-leucine by β-cyclodextrin in aqueous solution in terms of ultrasonic relaxation. J. Phys. Chem. A 106, 9442–9445 (2002)

    Article  CAS  Google Scholar 

  31. Miertus, S., Nair, A.C., Frecer, V., Chiellini, E., Chiellini, F., Solaro, R., et al.: Modelling of β-cyclodextrin with l-α-aminoacids residues. J. Incl. Phenom. Macrocycl. Chem. 34, 69–84 (1999)

    Article  CAS  Google Scholar 

  32. Buvári, Á., Barcza, L.: Complex formation of phenol, aniline and their nitro derivatives with β-cyclodextrin. J. Chem. Soc. Perkin Trans. 2, 543–545 (1988)

    Google Scholar 

  33. Inoue, Y., Hakushi, T., Liu, Y., Tong, L., Shen, B., Jin, D.: Thermodynamics of molecular recognition by cyclodextrins. 1. Calorimetric titration of inclusion complexation of naphthalenesulfonates with alpha-, beta-, and gamma-cyclodextrins: enthalpy-entropy compensation. J. Am. Chem. Soc. 115, 475–481 (1993)

    Article  CAS  Google Scholar 

  34. Dogan, A., Kilic, E.: Tautomeric and microscopic protonation equilibria of some α-amino acids. Anal. Biochem. 365, 7–13 (2007)

    Article  CAS  Google Scholar 

  35. Haskins, N.J., Saunders, M.R., Camilleri, P., Games, D.E.: The complexation and chiral selectivity of 2-hydroxypropyl-β-cyclodextrin with guest molecules as studied by electrospray mass spectrometry. Rapid Commun. Mass Spectrom. 8, 423–426 (1994)

    Article  CAS  Google Scholar 

  36. Djedaïni, F., Perly, B.: Nuclear magnetic resonance of cyclodextrins, derivatives and inclusion compounds. In: Duchêne, D. (ed.) New Trends in Cyclodextrins and Derivatives, pp. 215–247. Edition de Santé, Paris (1991)

    Google Scholar 

  37. Schneider, H.-J., Hacket, F., Rüdiger, V., Ikeda, H.: NMR studies of cyclodextrins and cyclodextrin complexes. Chem. Rev. 98, 1755–1786 (1998)

    Article  CAS  Google Scholar 

  38. Bekers, O., van den Kettenes Bosch, J.J., Van Helden, S.P., Seijkens, D., Beijnen, J.H., Bulti, A., Underberg, W.J.M.: Inclusion complex-formation of anthracyclene antibiotics with cyclodextrins. J. Incl. Phenom. Mol. Recognit. Chem. 11, 185–193 (1991)

    Article  CAS  Google Scholar 

  39. Lin, M., Jayawickrama, D.A., Rose, R.A., DelViscio, J.A., Larive, C.K.: Nuclear magnetic resonance spectroscopic analysis of the selective complexation of the cis and trans isomers of phenylalanylproline by β-cyclodextrin. Anal. Chim. Acta 307, 449–457 (1995)

    Article  CAS  Google Scholar 

  40. Yoshida, N., Shirai, T., Fujimoto, M.: Inclusion reactions of some phthalein and sulphophthalein compounds with cyclomalto-hexaose and heptaose. Carbohydr. Res. 192, 291–304 (1989)

    Article  CAS  Google Scholar 

  41. Inoue, Y., Kuan, Fu-Hua, Chûjô, R.: 1H and 13C NMR studies of formation and molecular dynamics of methylated cyclodextrin inclusion complexes with phenylalanine. Soc. Bull. Chem. Jpn. 60, 2539–2545 (1987)

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We are grateful to Cyclolab Ltd. for supplying the β-CD and QA-β-CD and to the Ministry of National Resources of Hungary (Ferenc Deák Fellowship) for the partial financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zita Sebestyén or Ágnes Buvári-Barcza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sebestyén, Z., Buvári-Barcza, Á. & Rohonczy, J. pH-dependent complex formation of amino acids with β-cyclodextrin and quaternary ammonium β-cyclodextrin. J Incl Phenom Macrocycl Chem 73, 199–210 (2012). https://doi.org/10.1007/s10847-011-0043-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-011-0043-2

Keywords

Navigation