Skip to main content

Advertisement

Log in

Topical liquid crystalline gel containing lornoxicam/cyclodextrin complex

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Lornoxicam is a potent analgesic non-steroidal anti-inflammatory drug that can be used topically to relieve pain and to reduce inflammation. The objectives of this study were to improve the therapeutic efficacy of lornoxicam by complexation with cyclodextrins and to formulate it in liquid crystalline gel. Lornoxicam and β-cyclodextrin (βCD) or hydroxypropyl-β-cyclodextrin (HPβCD) complexes were prepared using the kneaded method in 1:1, 1:2, 1:3 and 1:4 drug:CD molar ratios. Inclusion complexation in aqueous solution and solid state was evaluated by the ultraviolet, phase solubility diagram, differential scanning calorimetry, X-ray diffractometry and Fourier-transform infrared spectroscopy. The stoichiometry for the inclusion complex was found to be 1:2 drug:CD molar ratio as determined from Job’s plot. This result was confirmed by the in vitro dissolution studies for the prepared complexes. Among all the prepared complexes, the complex prepared with βCD in 1:2 drug:CD molar ratio showed highest improvement in drug dissolution and was chosen to be formulated in a topical preparation. For developing liquid crystalline gel, different ratios of Brij 97, glycerol and oils (liquid paraffin, isopropyl myristate and Miglyol® 812) were prepared. The formula composed of Brij 97 and glycerol in 3:1 weight ratio, 10% Miglyol® 812 and 40% water showed higher drug release compared to the other prepared gels. Moreover, this formula showed low ex vivo permeation on excised pigskin thus it could offer high topical effect with low systematic side effects. This formula showed superior anti-inflammatory activity when applied topically on rats’ skin after induction of burn compared to that of Feldene® gel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Madigan, M.T., Martinko, M., Parter, J.: Microbial growth control. In: Brock, T.D. (ed.) Brock Biology of Microorganisms, 9th edn. Prentice Hill Inc, USA (2000)

    Google Scholar 

  2. Fur, J.R.: Fundamentals of immunology. In: Hugo, W.B., Russell, A.D. (eds.) Pharmaceutical Microbiology, 5th edn, pp. 305–331. Blackwell Scientific Publications, London (1992)

    Google Scholar 

  3. Inflammation. Available from: http://en.wikipedia.org/wiki/Inflammation (2010). Accessed 30 July 2010

  4. Gloster, H.M., Brodland, D.G.: The epidemiology of skin cancer. Dermatol. Surg. 22, 217–226 (1996)

    Article  Google Scholar 

  5. Maverakis, E., Miyamura, Y., Bowen, M.P., Correa, G., Ono, Y., Goodarzi, H.: Light, including ultraviolet. J. Autoimmun. 34, 247–257 (2010)

    Article  Google Scholar 

  6. Foye, W.O., Thomas, L.L., David, A.W.: Principles of Medicinal Chemistry, 4th edn, p. 335. Williams and Wilkins, USA (1995)

    Google Scholar 

  7. Lim, H.W., Thorbecke, G.J., Baer, R.L.: Effect of indomethacin on alteration of ATPase-positive Langerhans cell density and cutaneous sunburn reaction induced by ultraviolet-B radiation. J. Invest. Dermatol. 81, 455–458 (1983)

    Article  CAS  Google Scholar 

  8. Bissett, D.L., Chatterjee, R., Hannon, D.P.: Photoprotective effect of topical anti-inflammatory agents against ultraviolet radiation-induced chronic skin damage in the hairless mouse. Photodermatol. Photoimmunol. Photomed. 7, 153–158 (1990)

    CAS  Google Scholar 

  9. Norholt, S.E., Sindet-Pedersen, S., Larsen, U., Bang, U., Ingerslev, J., Nielsen, O., Hansen, H.J., Ersboll, A.K.: Pain control after dental surgery: a double-blind, randomised trial of lornoxicam versus morphine. Pain 67, 335–343 (1996)

    Article  CAS  Google Scholar 

  10. Staunstrup, H., Ovesen, J., Laesrn, U.T., Elbaek, K., Larsen, U., Kroner, K.: Efficacy and tolerability of lornoxicam versus tramadol in postoperative pain. J. Clin. Pharmacol. 39, 834–841 (1999)

    Article  CAS  Google Scholar 

  11. Loftsson, T., Jarho, P., Masson, M., Jarvinen, T.: Cyclodextrins in drug delivery. Expert. Opin. Drug Deliv. 2, 335–351 (2005)

    Article  CAS  Google Scholar 

  12. Magnúsdóttir, A., Másson, M., Loftsson, T.: Self association and cyclodextrin solubilization of NSAIDs. J. Incl. Phenom. Macroc. Chem. Pharm. Bull. 44, 213–218 (2002)

    Article  Google Scholar 

  13. Muňoz-Botella, S., Del Castillo, B., Martín, M.: Cyclodetrin properties and applications of inclusion complex formation. Ars. Pharm. 36, 187–198 (1995)

    Google Scholar 

  14. Loftssona, T., Jarvinen, T.: Cyclodextrins in ophthalmic drug delivery. Adv. Drug Deliv. Rev. 36, 59–79 (1999)

    Article  CAS  Google Scholar 

  15. Pitha, J., Milecki, J., Fales, H., Pannell, L., Uekama, K.: Hydroxypropyl-β-cyclodextrin preparation and characterization: effects on solubility of drugs. Int. J. Pharm. 29, 73–82 (1986)

    Article  CAS  Google Scholar 

  16. Loftsson, T., Brewster, M.E.: Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. J. Pharm. Sci. 85, 1017–1025 (1996)

    Article  CAS  Google Scholar 

  17. Irie, T., Uekama, K.: Pharmaceutical applications of cyclodextrins. III. Toxicological issues and safety evaluation. J. Pharm. Sci. 86, 147–162 (1997)

    Article  CAS  Google Scholar 

  18. Thompson, D.O.: Cyclodextrins-enabling excipients: their present and future use in pharmaceuticals. Crit. Rev. Ther. Drug. Carr. Syst. 14, 1–104 (1997)

    CAS  Google Scholar 

  19. Gould, S., Scott, R.C.: 2-Hydroxypropyl-β-cyclodextrin (HP-β-CD): a toxicology review. Food Chem. Toxicol. 43, 1451–1459 (2005)

    Article  CAS  Google Scholar 

  20. Brewster, M.E., Mackie, C., Lampo, A., Noppe, M., Loftsson, T.: The use of solubilizing excipients and approaches to generate toxicology vehicles for contemporary drug pipelines. In: Augustijns, P., Brewster, M.E. (eds.) Solvent Systems and their Selection in Pharmaceutics and Biopharmaceutics, pp. 221–256. American Association of Pharmaceutical Scientists and Springer, New York (2007)

    Chapter  Google Scholar 

  21. Rajewski, R.A., Stella, V.J.: Pharmaceutical applications of cyclodextrins. 2. In vivo drug delivery. J. Pharm. Sci. 85, 1142–1169 (1996)

    Article  CAS  Google Scholar 

  22. Skjodt, N.M., Davies, N.M.: Clinical pharmacokinetics of lornoxicam. A short half-life oxicam. Clin. Pharmacokinet. 34, 421–428 (1998)

    Article  CAS  Google Scholar 

  23. Lin, S.Z., Wouessidjewe, D., Poelman, M.C., Duchene, D.: In vivo evaluation of indomethacin/cyclodextrin complexes. Gastrointestinal tolerance and dermal anti-inflammatory activity. Int. J. Pharm. 106, 63–67 (1994)

    Article  CAS  Google Scholar 

  24. Sinko, P.J.: Martin’s Physical Pharmacy and Pharmaceutical Sciences, 5th edn, pp. 278–279. Lippincott William’s & Wilkins, Philadelphia (2006)

    Google Scholar 

  25. Higuchi, T., Connors, K.A.: Advances in Analytical Chemistry and Instrumentation, pp. 117–212. Interscience publishers, New York (1965)

    Google Scholar 

  26. Uekama, K., Horiuchi, Y., Kikuchi, M., Hirayama, F., Ijitsu, T., Ueno, M.: Enhanced dissolution and oral bioavailability of α-tocopheryl esters by dimethyl-β-cyclodextrin complexation. J. Incl. Phenom. 6, 167–174 (1988)

    Article  CAS  Google Scholar 

  27. Khan, K.A., Rhodes, C.T.: Effect of compaction pressure on the dissolution efficiency of some direct compression systems. Pharm. Acta Helv. 47, 594–607 (1972)

    Google Scholar 

  28. Csόka, I., Csányi, E., Zapantis, G., Nagy, E., Fehér-Kiss, A., Horváth, G., Blazso, G., Eros, I.: In vitro and in vivo percutaneous absorption of topical dosage forms: case studies. Int. J. Pharm. 291, 11–19 (2005)

    Article  Google Scholar 

  29. Nürnberg, E., Friess, S.: Poloxamers as structure-determining helping materials for brushable systems. 1. Report: Representation and Kennzeichung of tri-component-system from Poloxamer/paraffin/water (Poloxamere als strukturbestimmende Hilfstoffe für streichfähige Systeme. 1. Mitteilung: Darsellung und Kennzeichung von Drei-Komponentsystemen aus Poloxamer/Paraffin/Wasser). Pharm. Acta Helv. 65, 105–112 (1990)

    Google Scholar 

  30. Shah, V.P., Tymes, N.W., Yamamoto, L.A., Skelly, J.P.: In vitro dissolution profile of transdermal nitroglycerin patches using paddle method. Int. J. Pharm. 32, 243–250 (1986)

    Article  CAS  Google Scholar 

  31. Caon, T., Costa, A.C.O., De Oliveira, M.A.L., Micke, G.A., Simões, C.M.O.: Evaluation of the transdermal permeation of different paraben combinations through a pig ear skin model. Int. J. Pharm. 391, 1–6 (2010)

    Article  CAS  Google Scholar 

  32. Escribano, E., Calpena, A.C., Queralt, J., Obach, R., Doménech, J.: Assessment of diclofenac permeation with different formulations: anti-inflammatory study of a selected formula. Eur. J. Pharm. Sci. 19, 203–210 (2003)

    Article  CAS  Google Scholar 

  33. Sevín, A., Özta, P., Senen, D., Han, Ü., Karaman, Ç., Tarimci, N., Kartal, M., Erdogan, B.: Effects of polyphenols on skin damage due to ultraviolet A rays: an experimental study on rats. J. Eur. Acad. Dermatol. Venereol. 21, 650–656 (2007)

    Google Scholar 

  34. Chowdhury, P., Panja, S., Chakravorti, S.: Photophysical behaviour of 4-(imidazole-1-yl) phenol and its complexation with beta-cyclodextrin in ground and excited states. Spectrochim. Acta A Mol. Biomol. Spectrosc. 60, 2295–2303 (2004)

    Article  Google Scholar 

  35. Loftsson, T., Hreinsdottir, D., Masson, M.: Evaluation of cyclodextrin solubilization of drugs. Int. J. Pharm. 302, 18–28 (2005)

    Article  CAS  Google Scholar 

  36. Loftsson, T., Másson, M., Sigurjónsdóttir, J.F.: Methods to enhance the complexation efficiency of cyclodextrins. STP. Pharma. Sci. 9, 237–242 (1999)

    CAS  Google Scholar 

  37. Yap, K.L., Liu, X., Thenmozhiyal, J.C., Ho, P.C.: Characterization of the 13-cis-retinoic acid/cyclodextrin inclusion complexes by phase solubility, photostability, physicochemical and computational analysis. Eur. J. Pharm. Sci. 25, 49–56 (2005)

    Article  CAS  Google Scholar 

  38. Del Valle, E.M.M.: Cyclodextrins and their uses: a review. Process Biochem. 39, 1033–1046 (2004)

    Article  Google Scholar 

  39. Yuan, C., Jin, Z.: Aerobic biodegradability of hydroxypropyl-β-cyclodextrins in soil. J. Incl. Phenom. Macrocycl. Chem. 58, 345–351 (2007)

    Article  CAS  Google Scholar 

  40. Loftsson, T., Máasson, M., Brewster, M.E.: Self-association of cyclodextrins and cyclodextrin complexes. J. Pharm. Sci. 93, 1091–1099 (2003)

    Article  Google Scholar 

  41. Sigurdsson, H.H., Stefansson, E., Gudmundsdόttir, E., Eysteinsson, T., Thorsteinsdόttir, M., Loftsson, T.: Cyclodextrin formulation of dorzolamide and its distribution in the eye after topical administration. J. Contr. Rel. 102, 255–262 (2005)

    Article  CAS  Google Scholar 

  42. Buchi, N.N., Chowdary, K.P.R., Murthy, K.V.R., Satyanarayana, V., Hayman, A.R., Becket, G.: Inclusion complexation and dissolution properties of nimesulide and meloxicam–hydroxypropyl-β-cyclodextrin binary systems. J. Incl. Phenom. Macroc. Chem. 53, 103–110 (2005)

    Article  Google Scholar 

  43. Badr-Eldin, S.M., Elkheshen, S.A., Ghorab, M.M.: Inclusion complexes of tadalafil with natural and chemically modified β-cyclodextrins. I: preparation and in vitro evaluation. Eur. J. Pharm. Biopharm. 70, 819–827 (2008)

    Article  CAS  Google Scholar 

  44. Fernandes, C.M., Teresa, V.M., Veiga, F.J.: Physicochemical characterization and in vitro dissolution behavior of nicardipine–cyclodextrins inclusion compounds. Eur. J. Pharm. Sci. 15, 79–88 (2002)

    Article  CAS  Google Scholar 

  45. Kim, K.H., Frank, M.J., Henderson, N.L.: Applications of differential scanning calorimetry to the study of solid drug dispersions. J. Pharm. Sci. 74, 283–289 (1985)

    Article  CAS  Google Scholar 

  46. Jun, S.W., Kim, M.S., Kim, J.S., Park, H.J., Lee, S., Woo, J.S.: Preparation and characterization of simvastatin/hydroxypropyl- β-cyclodextrin inclusion complex using supercritical antisolvent (SAS) process. Eur. J. Pharm. Biopharm. 66, 413–421 (2007)

    Article  CAS  Google Scholar 

  47. Rodríguez-Tenreiro, C., Alvarez-Lorenzo, C., Concheiro, A., Torres-Labandeira, J.J.: Characterization of cyclodextrin-carbopol interactions by DSC and FTIR. J. Therm. Anal. Calorim. 77, 403–411 (2004)

    Article  Google Scholar 

  48. Ryan, J.A.: Compressed pellet X-ray diffraction monitoring for optimization of crystallinity in lyophilized solids: imipenem: cilastatin sodium case. J. Pharm. Sci. 75, 805–807 (1986)

    Article  CAS  Google Scholar 

  49. Veiga, M.D., Dìaz, P.J., Ahsan, F.: Interactions of griseofulvin with cyclodextrins in solid binary systems. J. Pharm. Sci. 87, 891–900 (1998)

    Article  CAS  Google Scholar 

  50. Lin, S., Kao, Y.: Solid particulates of drug-β-cyclodextrin inclusion complexes directly prepared by a spray-drying technique. Int. J. Pharm. 56, 249–259 (1989)

    Article  CAS  Google Scholar 

  51. Moyano, J., Arias-Blanco, M., Ginés, J., Giordano, F.: Solid-state characterization of dissolution characteristics of gliclazide-β-cyclodextrin inclusion complexes. Int. J. Pharm. 148, 211–217 (1997)

    Article  CAS  Google Scholar 

  52. Cirri, M., Rangoni, C., Maestrelli, F., Mura, P.: Development of fast-dissolving tablets of Flurbiprofen-cyclodextrin complexes. Drug Dev. Ind. Pharm. 31, 697–707 (2005)

    Article  CAS  Google Scholar 

  53. Moyano, J.R., Ginés, J.M., Arias, M.J., Rabasco, A.M.: Study of the dissolution characteristics of oxazepam via complexation with β-cyclodextrin. Int. J. Pharm. 114, 95–102 (1995)

    Article  CAS  Google Scholar 

  54. Banker, G.S., Rhodes, C.T.: Modern Pharmaceutics, 2nd edn, pp. 857–858. Marcel Dekker, New York (1990)

    Google Scholar 

  55. Nesseem, I.D.: Formulation and evaluation of itraconazole via liquid crystal for topical delivery system. J. Pharmaceut. Biomed. Anal. 26, 387–399 (2001)

    Article  CAS  Google Scholar 

  56. Makai, M., Csányi, E., Németh, Z., Pálinkás, J., Erόs, I.: Structure and drug release of lamellar liquid crystals containing glycerol. Int. J. Pharm. 256, 95–107 (2003)

    Article  CAS  Google Scholar 

  57. Mittal, K.L.: Micellization, solubilization and microemulsions. In: Prince, L.M. (ed.) Micellization, Solubilization and Microemulsions, Vol. 1, pp. 45–54. Plenum Press, New York (1976)

    Google Scholar 

  58. Elworthy, P.H., Florence, A.T., Macfarlane, C.B.: Solubilization by Surface Active Agents, pp. 63–225. Chapman & Hall, London (1986)

    Google Scholar 

  59. Kriwet, K., Müller-Goymann, C.C.: Binary diclofenac diethylamine-water systems: micelles, vesicles and lyotropic liquid crystals. Eur. J. Pharm. Biopharm. 39, 234–238 (1993)

    CAS  Google Scholar 

  60. Engström, S.: Cubid phases for studies of drug partition into a lipid bilayers. Eur. J. Pharm. Sci. 8, 243–254 (1999)

    Article  Google Scholar 

  61. Hadgraft, J.: Skin, the final frontier. Int. J. Pharm. 224, 1–18 (2001)

    Article  CAS  Google Scholar 

  62. Barry, B.W.: Dermatologic Formulations: Percutaneous Absorption, pp. 1–233. Marcel Dekker, New York (1983)

    Google Scholar 

  63. El-Assasy, A., Soliman, I.I., Farid, S.F.: Formulation and bioavailability of tiaprofenic acid suppositories. Bull. Fac. Pharm. Cairo. Univ. 35, 151–157 (1997)

    CAS  Google Scholar 

  64. El-Nabarawi, M.A., Nesseem, D.I., Sleem, A.A.: Delivery and analgesic activity of tramadol from semisolid (topical) and solid (rectal) dosage forms. Bull. Fac. Pharm. Cairo. Univ. 41, 25–31 (2003)

    CAS  Google Scholar 

  65. Kreilgaard, M.: Influence of microemulsions on cutaneous drug delivery. Adv. Drug Del. Rev. 54, S77–S98 (2002)

    Article  CAS  Google Scholar 

  66. Kripke, M.L.: Immunological effects of ultraviolet radiation. J. Dermatol. 18, 429–433 (1991)

    CAS  Google Scholar 

  67. Elmets, C.A., Bergstresser, P.R.: Ultraviolet radiation effects on immune processes. Photochem. Photobiol. 6, 715–719 (1982)

    Article  Google Scholar 

  68. Yamawaki, M., Katiyar, S.K., Anderson, C.Y., Tubesing, K.A., Mukhtar, H., Elmets, C.A.: Genetic variation in low-dose UV-induced suppression of contact hypersensitivity and in the skin photocarcinogenesis response. J. Invest. Dermatol. 109, 716–721 (1997)

    Article  CAS  Google Scholar 

  69. Kripke, M.L.: Immunological unresponsiveness induced by ultraviolet radiation. Immunol. Rev. 80, 87–102 (1984)

    Article  CAS  Google Scholar 

  70. Jung, E.G.: Photocarcinogenesis in the Skin. J. Dermatol. 18, 1–10 (1991)

    CAS  Google Scholar 

  71. Rivas, J.M., Ullrich, S.E.: The role of IL-4, IL-10 and TNF-alpha in the immune suppression induced by ultraviolet radiation. J. Leukoc. Biol. 56, 769–775 (1994)

    CAS  Google Scholar 

  72. Eberlein-König, B., Jäger, C., Przybilla, B.: Ultraviolet B radiation-induced production of interleukin 1alpha and interleukin 6 in human squamous carcinoma cell line is wavelength-dependent and can be inhibited by pharmacological agents. Br. J. Dermatol. 139, 415–421 (1998)

    Article  Google Scholar 

  73. Soter, N.A.: Acute effects of ultraviolet radiation on the skin. Semin. Dermatol. 9, 11–15 (1990)

    CAS  Google Scholar 

  74. Snyder, D.S.: Cutaneous effects of topical indomethacin, an inhibitor of prostaglandin synthesis, on UV damaged skin. J. Invest. Dermatol. 64, 322–325 (1975)

    Article  CAS  Google Scholar 

  75. Kuwamoto, K., Miyauchi–Hashimoto, H., Tanaka, K., Eguchi, N., Inui, T., Urade, Y., Horio, T.: Possible involvement of enhanced prostaglandin E2 production on the photosensitivity in xeroderma pigmentosum group A model mice. J. Invest. Dermatol. 114, 241–246 (2000)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Mahmoud.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ammar, H.O., Ghorab, M., Mahmoud, A.A. et al. Topical liquid crystalline gel containing lornoxicam/cyclodextrin complex. J Incl Phenom Macrocycl Chem 73, 161–175 (2012). https://doi.org/10.1007/s10847-011-0039-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-011-0039-y

Keywords

Navigation