Advertisement

Synthesis and characterization of novel chiral calix[4]arene bearing (R)-(+)-1-phenylethylamine bonded silica particles

  • Serkan Erdemir
  • Mustafa Yilmaz
Original Article

Abstract

Two novel chiral di- and tri-amide derivatives of p-tert-butylcalix[4]arene were synthesized by (R)-(+)-1-Phenylethylamine via convenient reactions and then immobilized on aminopropyl functionalized silica particles. The prepared chiral calix[4]arenes and their silica polymers (Calix-SP1 and Calix-SP2) were characterized using 1H NMR, 13C NMR, FT-IR, and thermal and elemental analysis techniques.

Keywords

Calix[4]arene Silica particles Chiral Immobilization Amide 

Notes

Acknowledgment

We thank the Scientific Research Projects Foundation of Selcuk University (SUBAP-Grant Number 2009-09401040) for financial support of this work produced from a part of S. Erdemir’s PhD Thesis.

References

  1. 1.
    Gutsche, C.D.: Filling the baskets: complex formation with calixarenes. In: Stoddart, J.F., (ed.) Calixarenes Revisited, Monographs in Supramolecular Chemistry, pp. 164–207. The Royal Society Chemistry, Cambridge (1998)Google Scholar
  2. 2.
    Mandolini, L., Ungaro, R. (eds.): Calixarenes in Action. Imperial College Press, London (2000)Google Scholar
  3. 3.
    Asfari, Z., Bohmer, V., Harrowfield, J., Vicens, J. (eds.): Calixarenes 2001. Kluwer, Dordrecht (2001)Google Scholar
  4. 4.
    Bohmer, V.: Calixarenes, macrocycles with (almost) unlimited possibilities. Angew. Chem. 34, 713–745 (1995)CrossRefGoogle Scholar
  5. 5.
    Arnaud-Neu, F., Schwing-Weill, M.-J.: Calixarenes, new selective molecular receptors. Synth. Met. 90, 157–164 (1997)CrossRefGoogle Scholar
  6. 6.
    Ikeda, A., Shinkai, S.: Novel cavity design using calix[n]arene skeletons: toward molecular recognition and metal binding. Chem. Rev. 97, 1713–1734 (1997)CrossRefGoogle Scholar
  7. 7.
    Ludwig, R.: Calixarenes in analytical and separation chemistry. Fresenius J. Anal. Chem. 367, 103–128 (2000)CrossRefGoogle Scholar
  8. 8.
    Rebek, J.Jr.: Host-guest chemistry of calixarene capsules. J. Chem. Soc. Chem. Commun. 8, 637–643 (2000)Google Scholar
  9. 9.
    Moyer, B.A.: Complexation and transport. In: Gokel, G.W. (ed.) Molecular Recognition: Receptors for Cationic Guests. Comprehensive Supramolecular Chemistry, vol. 1, pp. 377–416. Pergamon Press, New York, Oxford (1996)Google Scholar
  10. 10.
    Schneider, H.-J.: In Fundamentals and Applications of Anion Separations, pp. 31–42. Kluwer-Plenum, New York (2004)CrossRefGoogle Scholar
  11. 11.
    Memon, S., Yilmaz, M., Roundhill, D.M.: Remediation and liquid–liquid phase transfer extraction of chromium (VI). Collect. Czech. Chem. Commun. 69, 1231–1250 (2004)CrossRefGoogle Scholar
  12. 12.
    Casnati, A., Sansone, F., Ungaro, R.: Peptido- and glycocalixarenes: playing with hydrogen bonds around hydrophobic cavities. Acc. Chem. Res. 36, 246–254 (2003)CrossRefGoogle Scholar
  13. 13.
    Fulton, D.A., Stoddart, F.: Neoglycoconjugates based on cyclodextrins and calixarenes. Bioconjug. Chem. 12, 655–672 (2001)CrossRefGoogle Scholar
  14. 14.
    Hartley, J.H., James, T.D., Ward, C.J.: Synthetic receptors. J. Chem. Soc. Perkin Trans. 1 19, 3155–3184 (2000)CrossRefGoogle Scholar
  15. 15.
    Lehn, J.-M.: Supramolecular Chemistry. Concepts and Perspectives. VCH, Weinheim (1995)CrossRefGoogle Scholar
  16. 16.
    Zhang, X.X., Bradshaw, J.S., Izatt, R.M.: Enantiomeric recognition of amine compounds by chiral macrocyclic receptors. Chem. Rev. 97, 3313–3362 (1997)CrossRefGoogle Scholar
  17. 17.
    Finn, M.G.: Emerging methods for the rapid determination of enantiomeric excess. Chirality 14, 534–540 (2002)CrossRefGoogle Scholar
  18. 18.
    Sirit, A., Yimaz, M.: Chiral calixarenes. Turk. J. Chem. 33, 159–200 (2009)Google Scholar
  19. 19.
    Murakami, Y., Kikuchi, J., Hisaeda, Y., Hayashida, O.: Artificial enzymes. Chem. Rev. 96, 721–758 (1996)CrossRefGoogle Scholar
  20. 20.
    Naumann, R., Schmidt, E.K., Jonczyk, A., Fendler, K., Kadenbach, B., Liebermann, T., Philip, D., Stoddart, J.F.: Self-assembly in natural and unnatural systems. Angew. Chem. Int. Ed. 35, 1154–1196 (1996)CrossRefGoogle Scholar
  21. 21.
    Demirtas, H.N., Bozkurt, S., Durmaz, M., Yilmaz, M., Sirit, A.: Synthesis of new chiral calix[4]azacrowns for enantiomeric recognition of carboxylic acids. Tetrahedron Asymmetry 19, 2020–2025 (2008)CrossRefGoogle Scholar
  22. 22.
    Kocabas, E., Durmaz, M., Alpaydin, S., Sirit, A., Yilmaz, M.: Chiral mono and diamide derivatives of calix[4]arene for enantiomeric recognition of chiral amines. Chirality 20, 26–34 (2008)CrossRefGoogle Scholar
  23. 23.
    Erdemir, S., Yilmaz, M.: Preparation and chromatographic performance of calix[4]crown-5 macrocyclebonded silica stationary phase. J. Sep. Sci. 34, 393–401 (2011)CrossRefGoogle Scholar
  24. 24.
    Collins, E.M., McKervey, M.A., Madigan, E., Moran, M.B.: Chemically modified calix[4]arenes. Regioselective synthesis of 1, 3-(distal) derivatives and related compounds. X-Ray crystal structure of a diphenol-dinitrile. J. Chem. Soc. Perkin Trans. 1, 3137–3142 (1991)CrossRefGoogle Scholar
  25. 25.
    Arneud-Neu, F., Collins, E.M., Deasy, M., Ferguson, G., Harris, S.J., Kaitner, B., Lough, A.J., McKervey, M.A., Marques, E., Ruhl, B.L., Weill, M.J.S., Seward, E.M.: Synthesis, X-ray crystal structures, and cation-binding properties of alkyl calixaryl esters and ketones, a new family of macrocyclic molecular receptors. J. Am. Chem. Soc. 111, 8681–8691 (1989)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of ChemistrySelcuk UniversityKonyaTurkey

Personalised recommendations