Skip to main content
Log in

Box–Behnken design for studying inclusion complexes of triglycerides and α-cyclodextrin: application to the heating protocol in molecular-dynamics simulations

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

In the present work, a Box–Behnken 34 design was applied to study inclusion complexes consisting of a saturated triglyceride with twelve carbons in each of the three side chains (TLG—trilaurylglyceride) and α-cyclodextrin (α-CD) in different TLG:α-CD stoichiometries: 1:1 (TLG@1.α-CD), 1:2 (TLG@2.α-CD) and 1:3 (TLG@3.α-CD). Four intrinsic variables commonly used to set up the heating protocol in the classical molecular-dynamics (MD) simulation were monitored: the heating ramp (W), the equilibrium time (E), the time step (S) and the dielectric constant of the medium (C). Based on the obtained responses, the most appropriate heating protocol and general aspects concerning the MD simulation of the host–guest supramolecular systems are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Loftsson, T., Duchêne, D.: Cyclodextrins and their pharmaceuticals applications. Int. J. Pharm. 329, 1–11 (2007). doi:10.1016/j.ijpharm.2006.10.044

    Article  CAS  Google Scholar 

  2. Connors, K.A.: The stability of cyclodextrin complexes in solution. Chem. Rev. 97, 1325–1357 (1997). doi:10.1021/cr960371r

    Article  CAS  Google Scholar 

  3. Szejtli, J.: Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 98, 1743–1754 (1998). doi:10.1021/cr970022c

    Article  CAS  Google Scholar 

  4. Schneider, H.J., Hacket, F., Rüdiger, V., Ikeda, H.: NMR studies of cyclodextrins and cyclodextrin complexes. Chem. Rev. 98, 1755–1785 (1998). doi:10.1021/cr970019t

    Article  CAS  Google Scholar 

  5. Rekharsky, M.V., Inoue, Y.: Complexation thermodynamics of cyclodextrins. Chem. Rev. 98, 1875–1918 (1998). doi:10.1021/cr970015o

    Article  CAS  Google Scholar 

  6. Wenz, G., Han, B.H., Muller, A.: Cyclodextrin rotaxanes and polyrotaxanes. Chem. Rev. 106(3), 782–817 (2006)

    Article  CAS  Google Scholar 

  7. Uekama, K., Hirayama, F., Irie, T.: Cyclodextrin drug carrier systems. Chem. Rev. 98, 2045–2076 (1998). doi:10.1021/cr970025p

    Article  CAS  Google Scholar 

  8. Venturini, C.D.G., Nicolini, J., Machado, C., Machado, V.G.: Propriedades e aplicações recentes de ciclodextrinas. Quim. Nova 31, 360–368 (2008)

    Article  CAS  Google Scholar 

  9. Anconi, C.P.A., Nascimento, C.S., De Almeida, W.B., Dos Santos, H.F.: Theoretical study of α-CD based [3]pseudorotaxanes: the role played by threadlike polymer on the stability of cyclodextrin dimers. J. Braz. Chem. Soc. 19, 1033–1040 (2008)

    Article  CAS  Google Scholar 

  10. Easton, C.J., Lincoln, S.F.: Modified Cyclodextrins—Scaffolds and Templates for Supramolecular Chemistry. Imperial College Press, London (1999)

    Google Scholar 

  11. Kolossváry, G.J., Kolossváry, I.: Molecular dynamics simulation of cyclodextrin inclusion complexes in enzymatic lipid hydrolysis. Biotechnol. Lett. 18, 440–444 (1996). doi:10.1007/BF00143467

    Article  Google Scholar 

  12. Schuchardt, U., Sercheli, R., Vargas, R.M.: Transesterification of vegetable oils: a review. J. Braz. Chem. Soc. 9, 199–210 (1998)

    Article  CAS  Google Scholar 

  13. Ma, F., Hanna, M.A.: Biodiesel production: a review. Bioresour. Technol. 70, 1–15 (1999). doi:10.1016/S0960-8524(99)00025-5

    Article  CAS  Google Scholar 

  14. Altin, R., Çentikaya, S., Yücesu, H.S.: The potential of using vegetable oil fuels as fuel for diesel engines. Energy Convers. Manag. 42, 529–538 (2001). doi:10.1016/S0196-8904(00)00080-7

    Article  CAS  Google Scholar 

  15. Pousa, G.P.A.G., Santos, A.L.F., Suarez, P.A.Z.: History and policy of biodiesel in Brazil. Energy Policy 35, 5393–5398 (2007). doi:10.1016/j.enpol.2007.05.010

    Article  Google Scholar 

  16. Demirbas, A.: Progress and recent trends in biofuels. Prog. Energy Combust. Sci. 33, 1–18 (2007). doi:10.1016/j.pecs.2006.06.001

    Article  CAS  Google Scholar 

  17. Demirbas, A.: Biofuels sources, biofuel policy, biofuel economy and global biofuel projections. Energy Convers. Manag. 49, 2106–2116 (2008). doi:10.1016/j.enconman.2008.02.020

    Article  CAS  Google Scholar 

  18. Geris, R., Dos Santos, N.A.C., Amaral, B.A., Maia, I.D.S., Castro, V.D., Carvalho, J.R.M.: Biodiesel de soja—reação de transesterificação para aulas práticas de química orgânica. Quim. Nova 30, 1369–1373 (2007)

    Article  CAS  Google Scholar 

  19. Lipkowitz, K.B.: Applications of computational chemistry to the study of cyclodextrins. Chem. Rev. 98, 1829–1874 (1998). doi:10.1021/cr9700179

    Article  CAS  Google Scholar 

  20. Ferreira, S.L.C., Bruns, R.E., Ferreira, H.S., Matos, G.D., David, J.M., Brandão, G.C., Da Silva, E.G.P., Portugal, L.A., Dos Reis, P.S., Souza, A.S., Dos Santos, W.N.L.: Box–Behnken design: an alternative for the optimization of analytical methods. Anal. Chim. Acta 597, 179–186 (2007). doi:10.1016/j.aca.2007.07.011

    Article  CAS  Google Scholar 

  21. Weiner, S.J., Kollman, P.A., Case, D.A., Singh, U.C., Ghio, C., Alagona, G., Profeta Jr., S., Weiner, P.: A new force field for molecular mechanical simulation of nucleic acids and proteins. J. Am. Chem. Soc. 106, 765–784 (1984). doi:10.1021/ja00315a051

    Article  CAS  Google Scholar 

  22. Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz Jr., K.M., Ferguson, D.M., Spellmeyer, D.C., Fox, T., Caldwell, J.W., Kollman, P.A.: A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 117, 5179 (1995). doi:10.1021/ja00124a002

    Article  CAS  Google Scholar 

  23. Mohamadi, F., Richards, N.G.J., Guida, W.C., Liskamp, R., Lipton, M., Caufield, C., Chang, G., Hendrickson, T., Still, W.C.: Macromodel—an integrated software system for modelling organic and bioorganic molecules using molecular mechanics. J. Comput. Chem. 11, 440–467 (1990). doi:10.1002/jcc.540110405

    Article  CAS  Google Scholar 

  24. Ryckaert, J.P.: Special geometrical constraints in the molecular-dynamics of chain molecules. Mol. Phys. 55, 549–556 (1985)

    Article  CAS  Google Scholar 

  25. Ferreira, B.A., Dos Santos, H.F., Bernardes, A.T., Silva, G.G., De Almeida, W.B.: Theoretical study of solvent and temperature effects on the behaviour of poly(ethylene oxide) (PEO). Chem. Phys. Lett. 307, 95–101 (1999). doi:10.1016/S0009-2614(99)00501-1

    Article  CAS  Google Scholar 

  26. Bonnet, P., Jaime, C., Morin-Allory, L.: α-, β-, and γ-cyclodextrin dimers. Molecular modeling studies by molecular mechanics and molecular dynamics simulations. J. Org. Chem. 66, 689–692 (2001). doi:10.1021/jo0008284

    Article  CAS  Google Scholar 

  27. Anconi, C.P.A., Nascimento, C.S., De Almeida, W.B., Dos Santos, H.F.: Structure and stability of (α-CD)3 aggregate and OEG@(α-CD)33 pseudorotaxane in aqueous solution: a molecular dynamics study. J. Phys. Chem. B 113, 9762–9769 (2009)

    Article  CAS  Google Scholar 

  28. Dos Santos, W.L., Dos Santos, C.M.M., Costa, J.L.O., Andrade, H.M.C., Ferreira, S.L.C.: Multivariate optimization and validation studies in on-line pré-concentration system for lead determination in drinking water and saline waste from oil refinery. Microchem. J. 77, 123–129 (2004)

    Article  CAS  Google Scholar 

  29. Khajeh, M.: Optimization of microwave-assisted extraction procedure for zinc and copper determination in food samples by Box–Behnken design. J. Food Compos. Anal. 22, 343–346 (2009)

    Article  CAS  Google Scholar 

  30. Montgomery, D.C.: Design and Analysis of Experiments. Wiley, Hoboken (2005)

    Google Scholar 

Download references

Acknowledgments

The authors thank the Conselho Nacional de Desenvolvimento Científico (CNPq—479682/2008-9) for research concessions and for financial support and Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG—CEX—APQ-00498-08) for the fomentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hélio F. Dos Santos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Almeida, E.W.C., Anconi, C.P.A., Novato, W.T.G. et al. Box–Behnken design for studying inclusion complexes of triglycerides and α-cyclodextrin: application to the heating protocol in molecular-dynamics simulations. J Incl Phenom Macrocycl Chem 71, 103–111 (2011). https://doi.org/10.1007/s10847-010-9907-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-010-9907-0

Keywords

Navigation