Electrochemical study of indapamide and its complexation with β-cyclodextrin

  • Abd-Elgawad Radi
  • Shimaa Eissa
Original Article


Electrochemical oxidation of indapamide has been investigated at glassy carbon electrode using cyclic and differential pulse voltammetry (DPV). Indapamide exhibited two well resolved signals which attributed to the oxidation of indoline ring and benzamide moiety in phosphate buffers in the pH range of 2.7–10.1. The oxidation processes have been shown to be irreversible and diffusion controlled. The formation of an inclusion complex of indapamide with β-cyclodextrin (β-CD) has been investigated by cyclic, differential pulse voltammetry as well as UV–Vis spectrophotometry. The stability constant of the complex was determined to be 6199 and 2717 M−1 using differential pulse voltammetry and UV–Vis spectrophotometry, respectively.


Cyclodextrin Indapamide Voltammetry Spectrophotometry 


  1. 1.
    Thomas, J.R.: A review of 10 years of experience with indapamide as an anti hypertensive agent. Hypertension 7, 152–156 (1985)Google Scholar
  2. 2.
    Tamura, A., Sato, T., Fum, T.: Antioxidant activity of indapamide and its metabolite. Chem. Pharm. Bull. 38, 255–257 (1990)Google Scholar
  3. 3.
    Uehara, Y., Shirahase, H., Nagata, T., Ishimitsu, T., Morishita, S., Osumi, S., Matsuoka, H., Sugimoto, T.: Radical scavengers of indapamide in prostacyclin synthesis in rat smooth muscle cell. Hypertension 15, 216–224 (1990)Google Scholar
  4. 4.
    Breugnot, C., Iliou, J., Privat, S., Robin, F., Lenaers, A.: In vitro an ex vitro inhibition of the modification of low-density lipoprotein by indapamide. J. Cardiovasc. Pharmacol. 20, 340–347 (1992)CrossRefGoogle Scholar
  5. 5.
    Bataillard, A., Schiavi, P., Sassard, J.: Pharmacological properties of indapamide. Rationale for use in hypertension. Clin. Pharmacokinet. 37, 7–12 (1999)CrossRefGoogle Scholar
  6. 6.
    Ganado, P., Ruiz, E., Rio, M.D., Larcher, F., Sanz, M., Steinert, J.R., Tejerina, T.: Growth inhibitory activity of indapamide on vascular smooth muscle cells. Eur. J. Pharmacol. 428, 19–27 (2001)CrossRefGoogle Scholar
  7. 7.
    Szejtli, J.: Cyclodextrins and their inclusion complexes. Akademiai Kiado, Budapest (1982)Google Scholar
  8. 8.
    Inoue, Y., Hakushi, T., Liu, Y., Tong, L.H., Shen, B.J., Jin, D.S.: Thermodynamics of molecular recognition by cyclodextrins. 1. Calorimetric titration of inclusion complexation of naphthalenesulfonates with α-, β-, and γ-cyclodextrins: enthalpy-entropy compensation. J. Am. Chem. Soc. 115, 475–481 (1993)CrossRefGoogle Scholar
  9. 9.
    Manning, M.C., Patel, K., Borchardt, R.T.: Stability of protein pharmaceuticals. Pharm. Res. 6, 903–918 (1989)CrossRefGoogle Scholar
  10. 10.
    Saenger, W.: Structural aspects of cyclodextrins and their inclusion complexes. In: Atwood, J.L., Davies, J.E.D, MacNicol, D.D. (eds.), vol. 2, pp. 231–259. Academic Press, London (1984)Google Scholar
  11. 11.
    Funasaki, N., Ishikawa, S., Neya, S.: Advances in physical chemistry and pharmaceutical applications of cyclodextrins. Pure Appl. Chem. 80, 1511–1524 (2008)CrossRefGoogle Scholar
  12. 12.
    Loftsson, T., Duchêne, D.: Cyclodextrins and their pharmaceutical applications. Int. J. Pharm. 329, 1–11 (2007)CrossRefGoogle Scholar
  13. 13.
    Singh, I., Aboul-Enein, H.Y.: Pharmaceutical applications of cyclodextrins. FABAD J. Pharm. Sci. 30, 214–221 (2005)Google Scholar
  14. 14.
    Uekama, K.: Recent aspects of pharmaceutical application of cyclodextrins. J. Inclusion Phenom. 44, 3–7 (2002)CrossRefGoogle Scholar
  15. 15.
    Uekama, K.: Pharmaceutical application of cyclodextrins as multi-functional drug carriers. Yakugaku Zasshi 124, 909–935 (2004)CrossRefGoogle Scholar
  16. 16.
    Özdemir, N., Ordu, Ş.: Improvement of dissolution properties of furosemide by complexation with β-cyclodextrin. Drug Dev. Ind. Pharm. 24, 19–25 (1998)CrossRefGoogle Scholar
  17. 17.
    Ammar, H.O., Ghorab, M., Emara, L.H., El-Nahhas, S.A., Makram, T.S.: Inclusion complexation of furosemide in cyclodextrins: part 2: implication on bioavailability. Pharmazie 54, 207–210 (1999)Google Scholar
  18. 18.
    Şoica, C., Gyeresi, A., Dehelean, C., Peev, C., Aigner, Z., Kata, M.: Thin-layer chromatography as analytical method for inclusion complexes of some diuretics with cyclodextrins. Farmacia 56, 75–82 (2008)Google Scholar
  19. 19.
    Brittain, H.G.: Analytical profiles of drug substances and excipients. vol. 23, p. 254, Academic Press, San Diego (1994)Google Scholar
  20. 20.
    Bard, A.J., Faulkner, L.R.: Electrochemical methods: fundamentals and applications. Wiley, New York (2001)Google Scholar
  21. 21.
    Harrison, J.A., Khan, Z.A.: The oxidation of hydrazine on platinum in acid solution. J. Electroanal. Chem. 28, 131–138 (1970)CrossRefGoogle Scholar
  22. 22.
    Bird, C.W., Cheeseman, G.W.H.: Comprehensive heterocyclic chemistry. The structure, reactions, synthesis and uses of heterocyclic compounds. Pergamon Press, Oxford (1984)Google Scholar
  23. 23.
    Legorburu, M.J., Alonso, R.M., Jiménez, R.M.: Electrochemical oxidation of the diuretic indapamide. Electroanalysis 8, 280–284 (1996)CrossRefGoogle Scholar
  24. 24.
    Wang, J.: Analytical electrochemistry. Wiley, New York (2000)CrossRefGoogle Scholar
  25. 25.
    Rutsaert, R., Fernandes, M.: New drugs annual: cardiovascular drugs. In: Scriabine, A. (ed.) Raven Press, New York (1983)Google Scholar
  26. 26.
    Backensfeld, T., ller, B.W.M., Kolter, K.: Interaction of NSA with cyclodextrins and hydroxypropyl cyclodextrin derivatives. Int. J. Pharm. 74, 85–93 (1991)CrossRefGoogle Scholar
  27. 27.
    Connors, K.A., Rosanske, T.W.: Trans-Cinnamic acid-acyclodextrin system as studied by solubility, spectral, and potentiometric techniques. J. Pharm. Sci. 69, 173–179 (1980)CrossRefGoogle Scholar
  28. 28.
    Krishnamoorthy, R., Mitra, A.K.: Complexation of weak acids and bases with cyclodextrins: effects of substrate ionization on the estimation and interpretation of association constants. Int. J. Pharm. Advances 1, 329–343 (1996)Google Scholar
  29. 29.
    Dang, X.J., Tong, J., Li, H.L.: The electrochemistry of the inclusion complex of anthraquinone with β-cyclodextrin studied by means of OSWV. J. Inclus. Phenom. Mol. 24, 275–286 (1996)CrossRefGoogle Scholar
  30. 30.
    Dang, X.-J., Nie, M.-Y., Tong, J., Li, H.-L.: Inclusion of the parent molecules of some drugs with β-cyclodextrin studied by electrochemical and spectrometric methods. J. Electroanal. Chem. 448, 61–67 (1998)CrossRefGoogle Scholar
  31. 31.
    Kelly, J.M., Lyons, W.J.M.: Electrochemistry, sensors and analysis. In: Smyth, M.R., Vos, J.G. (eds.) p. 205, Elsevier, Amsterdam (1986)Google Scholar
  32. 32.
    Carter, M.T., Rodriguez, A.J., Bard, A.G.: Voltammetric studies of the interaction of metal chelates with DNA. 2. Tris-chelated complexes of cobalt(III) and iron(II) with 1, 10-phenanthroline and 2, 2’-bipyridine. J. Am. Chem. Soc. 111, 8901–8911 (1989)CrossRefGoogle Scholar
  33. 33.
    Feng, Q., Li, N., Jiang, Y.: Electrochemical studies of porphyrin interacting with DNA and determination of DNA. Anal. Chim. Acta 344, 97–104 (1997)CrossRefGoogle Scholar
  34. 34.
    Zhao, G.C., Zhu, J.J., Zhang, J.J., Chen, H.Y.: Voltammetric studies of the interaction of methylene blue with DNA by means of β-cyclodextrin. Anal. Chim. Acta 394, 337–344 (1999)CrossRefGoogle Scholar
  35. 35.
    Ibrahim, M.S., Shehatta, I.S., Al-Nayeli, A.A.: Voltammetric studies of the interaction of lumazine with cyclodextrins and DNA. J. Pharm. Biomed. Anal. 28, 217–225 (2002)CrossRefGoogle Scholar
  36. 36.
    Radi, A.-E., Eissa, S.: Voltammetric and spectrophotometric study on the complexation of glibenclamide with β-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 68(3–4), 417–421 (2010)CrossRefGoogle Scholar
  37. 37.
    Yanez, C., Nunez-Vergara, L.J., Squella, J.A.: Differential pulse polarographic and UV–Vis spectrophotometric study of inclusion complexes formed by 1, 4-dihydropyridine calcium antagonists, nifedipine and nicardipine with β-cyclodextrin. Electroanalysis 15, 1771–1777 (2003)CrossRefGoogle Scholar
  38. 38.
    Benesi, H.A., Hildebrand, J.H.: A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J. Am. Chem. Soc. 71, 2703–2707 (1949)CrossRefGoogle Scholar
  39. 39.
    Nie, M.Y., Wang, Y., Li, H.L.: Electrochemical and spectral properties of phenylhydrazine in the presence of β-cyclodextrin. Pol. J. Chem. 71, 816–822 (1997)Google Scholar
  40. 40.
    Junquera, E., Pena, L., Aicart, E.: A conductimetric study of the interaction of P-cyclodextrin or hydroxypropyl-β-cyclodextrin with dodecyltrimethylammonium bromide in water solution. Langmuir 11, 4685–4690 (1995)CrossRefGoogle Scholar
  41. 41.
    Junquera, E., Pena, L., Aicart, E.: Micellar behavior of the aqueous solutions of dodecylethyldimethylammonium bromide. A characterization study in the presence and absence of hydroxypropyl-β-cyclodextrin. Langmuir 13, 219–224 (1997)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of Science (Dumyat)Mansoura UniversityDumyatEgypt

Personalised recommendations